Modification of calcium phosphate foam ceramics with bioapatite in SBF solution
V.K. Krut’ko1, L.Yu. Maslova1, O.N. Musskaya1, T.V. Safronova2, A.I. Kulak1
1 Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
2 Lomonosov Moscow State University
DOI: 10.26456/pcascnn/2021.13.870
Original article
Abstract: The multiphase calcium phosphate foam ceramics, represented by β -tricalcium phosphate ( 65%) and β -calcium pyrophosphate ( 25 %),including hydroxyapatite (5 %) and α -tricalcium phosphate (5 %), with 60–64 % porosity and a through architecture of polyurethane foam was obtained. The application of a layer of hydroxyapatite led to an increase in the content of hydroxyapatite to 25 %, α -tricalcium phosphate to 40%, and an increase in static strength to 0,03 MPa with a decrease in porosity to 49%. The application of the second layer of hydroxyapatite promoted an increase in the content of hydroxyapatite to 40%, the static strength reached 0,05 MPa at a porosity 40 %. The bioapatite formation in the shape of «foam spheres» with a size from 2 to 10 μm occurred in the process of modifying all types of foam ceramics in a SBF solution during 21 – 28 days. The modified calcium phosphate foam ceramics enriched with α -tricalcium phosphate and hydroxyapatite, was characterized by the maximum static strength 0,08 MPa at a porosity 38%.
Keywords: calcium phosphate foam ceramics, hydroxyapatite, polyurethane foam, tricalcium phosphate, SBF (Simulated body fluid), bioapatite
- Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
- Lyubov Yu. Maslova – Junior Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
- Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher of Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
- Tatyana V. Safronova – Ph. D., Assistant Professor, Senior Researcher of Materials Science Faculty, Lomonosov Moscow State University
- Anatoly I. Kulak – Corresponding Member, D. Sc., Professor, Director, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
Reference:
Krut’ko, V.K. Modification of calcium phosphate foam ceramics with bioapatite in SBF solution / V.K. Krut’ko, L.Yu. Maslova, O.N. Musskaya, T.V. Safronova, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 870-880. DOI: 10.26456/pcascnn/2021.13.870. (In Russian).
Full article (in Russian): download PDF file
References:
1. Safronova T.V. Inorganic Materials for Regenerative Medicine, Inorganic Materials, 2021, vol. 57, issue 5, pp. 443-474. DOI: 10.1134/S002016852105006X.
2. Dorozhkin S. Calcium Orthophosphates in Nature, Biology and Medicine, Materials, 2009, vol. 2, issue 3, pp. 399-498. DOI: 10.3390/ma2020399.
3. Safronova T.V., Putlyaev V.I. Meditsinskoe neorganicheskoe materialovedenie v Rossii: kal'tsiifosfatnye materialy [Medical inorganic materials research in Russia: calcium phosphate materials], Nanosistemy: fizika, khimiya, matematika [Nanosystems: physics, chemistry, mathematics], 2013, vol. 4, issue 1, pp. 24-47. (In Russian).
4. Samavedi S., Whittington A.R., Goldstein A.S. Calcium phosphate ceramics in bone tissue engineering: а review of properties and their influence on cell behavior, Acta Biomaterialia, 2013, vol. 9, issue 9, pp. 8037- 8045. DOI: 10.1016/j.actbio.2013.06.014.
5. Montufar E.B., Vojtova L., Celko L., Ginebra M.-P. Calcium phosphate foams: potential scaffolds for bone tissue modeling in three dimension, 3D Cell Culture. Part of the Methods in Molecular Biology, 2017, vol. 1612, pp. 79-94. DOI: 10.1007/978-1-4939-7021-6_6.
6. Safronova T.V., Putlyaev V.I., Knot’ko A.V. et al. Calcium phosphate ceramic in the system Ca(PO3)2–Ca2P2O7 based on powder mixtures containing calcium hydrophosphate, Glass and Ceramics, 2018, vol. 75, issue 7-8, pp. 279-286. DOI: 10.1007/s10717-018-0072-z.
7. Tamai M., Isama K., Nakaoka R., Tsuchiya T. Synthesis of a novel β -tricalcium phosphate / hydroxyapatite biphasic calcium phosphate containing niobium ions and evaluation of its osteogenic properties, Journal of Artificial Organs, 2007, vol. 10, issue 1, pp. 22-28. DOI: 10.1007/s10047-006-0363-y.
8. Krut’ko V.K., Musskaya O.N., Kulak A.I. Thermal transformations of composites based on hydroxyapatite and zirconia, Inorganic Materials, 2017, vol. 53, issue 4, pp. 429-436. DOI: 10.1134/S0020168517040094.
9. Gomes S., Renaudin G., Mesbah A. et al. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study, Acta Biomaterialia, 2010, vol. 6, issue 8, pp. 3264-3274. DOI: 10.1016/j.actbio.2010.02.034.
10. Fujiwara K., Okada M., Takeda S., Matsumoto N. A novel strategy for preparing nanoporous biphasic calcium phosphate of controlled composition via a modified nanoparticle-assembly method, Materials Science and Engineering: C, 2014, vol. 35, pp. 259-266. DOI: 10.1016/j.msec.2013.11.019.
11. Sánchez-Salcedo S., Arcos D., Vallet-Regí M. Upgrading calcium phosphate scaffolds for tissue engineering applications, Key Engineering Materials, 2008, vol. 377, pp. 19-42. DOI: 10.4028/www.scientific.net/KEM.377.19.
12. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Vliyanie fazy trikal'tsiifosfata na prochnost' gidroksiapatitovoi penokeramiki v protsesse termicheskogo otzhiga [Influence of tricalcium phosphate phase on the strength of hydroxyapatite foam ceramics in the thermal annealing process], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials], 2017, issue 9, pp. 264-270. DOI: 10.26456/pcascnn/2017.9.264. (In Russian).
13. Kokubo T., Kushitani H., Sakka S. et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A – W, Journal of Biomedical Materials Research, 1990, vol. 24, issue 6, pp. 721-734. DOI: 10.1002/jbm.820240607.
14. Baino F., Yamaguchi S. The Use of Simulated Body Fluid (SBF) for Assessing Materials Bioactivity in the Context of Tissue Engineering: Review and Challenges, Biomimetics, 2020, vol. 5, issue 4, art. no. 57, 19 p. DOI: 10.3390/biomimetics5040057.
15. Kokubo T., Yamaguchi S. Simulated body fluid and the novel bioactive materials derived from it, Journal of Biomedical Materials Research Part A, 2019, vol. 107, issue 5, pp. 968-977. DOI: 10.1002/jbm.a.36620.
16. Krut’ko V.K., Kulak A.I., Musskaya O.N., Lesnikovich J.A. Sinteticheskii gidroksiapatit – osnova kostnozameshchayushchikh biomaterialov [Synthetic Hydroxyapatite – Base of Artificial Bone Biomaterials], Sofiya: elektronnyj nauchno-prosvetitel'skij zhurnal [Sofia: electronic scientific and educational journal], 2017, no. 1, pp. 50-57. (In Russian).
17. Musskaya O.N., Kulak A.I., Krut’ko V.K. et al. Preparation of bioactive mesoporous calcium phosphate granules, Inorganic Materials, 2018, vol. 54, issue 2, pp. 117-124. DOI: 10.1134/S0020168518020115.
18. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Termicheskaya ehvolyutsiya kal'tsiifosfatnoi penokeramiki, poluchennoi na osnove gidroksiapatita i monokal'tsiifosfata monogidrata [Thermal evolution of calcium phosphate foam ceramics obtained on the basis of hydroxyapatite and monocalcium phosphate of monohydrate], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials], 2019, issue 11, pp. 615-623. DOI: 10.26456/pcascnn/2019.11.615. (In Russian).
19. Krut’ko V.K., Musskaya O.N., Kulak A.I. et al. Kal'tsiifosfatnaya penokeramika s reguliruemoi bioaktivnost'yu [Calcium phosphate foam ceramics with regulated bioactivity], Fiziko khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials], 2018, issue 10, pp. 374-382. DOI: 10.26456/pcascnn/2018.10.374. (In Russian).
20. Krut’ko V.K., Musskaya O.N., Kulak A.I. et al. Calcium phosphate foam ceramic based on hydroxyapatite–brushite powder mixture, Glass and Ceramics, 2019, vol. 76, issue 3-4, pp. 113-118. DOI: 10.1007/s10717-019-00145-y.
21. Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, vol. 27, issue 15, pp. 2907-2915. DOI: 10.1016/j.biomaterials.2006.01.017.
22. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 15.06.2021).
23. Huang Y., Huang W., Sun L. et al. Phase transition from α -TCP into β -TCP in TCP / HA composites, International Journal of Applied Ceramic Technology, 2010, vol. 7, issue 2, pp. 184-188. DOI: 10.1111/j.1744- 7402.2009.02384.x.
24. Kim D.H., Chun H.H., Lee J.D., Yoon S.-Y. Evaluation of phase transformation behavior in biphasic calcium phosphate with controlled spherical micro-granule architecture, Ceramics International, 2014, vol. 40, issue 4, pp. 5145-5155. DOI: 10.1016/j.ceramint.2013.10.064.
25. Maciejewski M., Brunner T.J., Loher S.F. et al. Phase transitions in amorphous calcium phosphates with different / Ca P ratios, Thermochimica Acta, 2008, vol. 468, issue 1-2, pp. 75-80. DOI: 10.1016/j.tca.2007.11.022.
26. Kim H.M., Himeno T., Kawashita M. et al. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment, Journal of The Royal Society Interface, 2004, vol. 1, issue 1, pp. 17-22. DOI: 10.1098/rsif.2004.0003.
27. Kokubo T., Himeno T., Kim H.M. et al. Process of bonelike apatite formation on sintered hydroxyapatite in serum-containing SBF, Key Engineering Materials, 2004, vol. 254-256, pp. 139-142. DOI: 10.4028/www.scientific.net/KEM.254-256.139.
28. Kokubo T., Ohtsuki C., Kotani S. et al. Surface structure of bioactive glass-ceramic A – W implanted into sheep and human vertebra, Bioceramics, vol. 2, ed. by G. Heimke. Cologne, German Ceramic Society, 1990, pp. 113-120.
29. Bano S., Romero R., Grant D.M. et al. In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray, Surface and Coatings Technology, 2021, vol. 407, art. no. 126764, 13 p. DOI: 10.1016/j.surfcoat.2020.126764.
30. Gao Ch., Wei P., Feng P. et al. Nano SiO2 and MgO improve the properties of porous β -TCP scaffolds via advanced manufacturing technology, International Journal of Molecular Sciences, 2015, vol. 16, issue 4, pp. 6818-6830. DOI: 10.3390/ijms16046818.