Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Modification of calcium phosphate foam ceramics with bioapatite in SBF solution

V.K. Krut’ko1, L.Yu. Maslova1, O.N. Musskaya1, T.V. Safronova2, A.I. Kulak1

1 Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
2 Lomonosov Moscow State University

DOI: 10.26456/pcascnn/2021.13.870

Original article

Abstract: The multiphase calcium phosphate foam ceramics, represented by β -tricalcium phosphate ( 65%) and β -calcium pyrophosphate ( 25 %),including hydroxyapatite (5 %) and α -tricalcium phosphate (5 %), with 60–64 % porosity and a through architecture of polyurethane foam was obtained. The application of a layer of hydroxyapatite led to an increase in the content of hydroxyapatite to 25 %, α -tricalcium phosphate to 40%, and an increase in static strength to 0,03 MPa with a decrease in porosity to 49%. The application of the second layer of hydroxyapatite promoted an increase in the content of hydroxyapatite to 40%, the static strength reached 0,05 MPa at a porosity 40 %. The bioapatite formation in the shape of «foam spheres» with a size from 2 to 10 μm occurred in the process of modifying all types of foam ceramics in a SBF solution during 21 – 28 days. The modified calcium phosphate foam ceramics enriched with α -tricalcium phosphate and hydroxyapatite, was characterized by the maximum static strength 0,08 MPa at a porosity 38%.

Keywords: calcium phosphate foam ceramics, hydroxyapatite, polyurethane foam, tricalcium phosphate, SBF (Simulated body fluid), bioapatite

  • Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Lyubov Yu. Maslova – Junior Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher of Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Tatyana V. Safronova – Ph. D., Assistant Professor, Senior Researcher of Materials Science Faculty, Lomonosov Moscow State University
  • Anatoly I. Kulak – Corresponding Member, D. Sc., Professor, Director, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Reference:

Krut’ko, V.K. Modification of calcium phosphate foam ceramics with bioapatite in SBF solution / V.K. Krut’ko, L.Yu. Maslova, O.N. Musskaya, T.V. Safronova, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 870-880. DOI: 10.26456/pcascnn/2021.13.870. (In Russian).

Full article (in Russian): download PDF file

References:

1. Safronova T.V. Inorganic Materials for Regenerative Medicine, Inorganic Materials, 2021, vol. 57, issue 5, pp. 443-474. DOI: 10.1134/S002016852105006X.
2. Dorozhkin S. Calcium Orthophosphates in Nature, Biology and Medicine, Materials, 2009, vol. 2, issue 3, pp. 399-498. DOI: 10.3390/ma2020399.
3. Safronova T.V., Putlyaev V.I. Meditsinskoe neorganicheskoe materialovedenie v Rossii: kal'tsiifosfatnye materialy [Medical inorganic materials research in Russia: calcium phosphate materials], Nanosistemy: fizika, khimiya, matematika [Nanosystems: physics, chemistry, mathematics], 2013, vol. 4, issue 1, pp. 24-47. (In Russian).
4. Samavedi S., Whittington A.R., Goldstein A.S. Calcium phosphate ceramics in bone tissue engineering: а review of properties and their influence on cell behavior, Acta Biomaterialia, 2013, vol. 9, issue 9, pp. 8037- 8045. DOI: 10.1016/j.actbio.2013.06.014.
5. Montufar E.B., Vojtova L., Celko L., Ginebra M.-P. Calcium phosphate foams: potential scaffolds for bone tissue modeling in three dimension, 3D Cell Culture. Part of the Methods in Molecular Biology, 2017, vol. 1612, pp. 79-94. DOI: 10.1007/978-1-4939-7021-6_6.
6. Safronova T.V., Putlyaev V.I., Knot’ko A.V. et al. Calcium phosphate ceramic in the system Ca(PO3)2–Ca2P2O7 based on powder mixtures containing calcium hydrophosphate, Glass and Ceramics, 2018, vol. 75, issue 7-8, pp. 279-286. DOI: 10.1007/s10717-018-0072-z.
7. Tamai M., Isama K., Nakaoka R., Tsuchiya T. Synthesis of a novel β -tricalcium phosphate / hydroxyapatite biphasic calcium phosphate containing niobium ions and evaluation of its osteogenic properties, Journal of Artificial Organs, 2007, vol. 10, issue 1, pp. 22-28. DOI: 10.1007/s10047-006-0363-y.
8. Krut’ko V.K., Musskaya O.N., Kulak A.I. Thermal transformations of composites based on hydroxyapatite and zirconia, Inorganic Materials, 2017, vol. 53, issue 4, pp. 429-436. DOI: 10.1134/S0020168517040094.
9. Gomes S., Renaudin G., Mesbah A. et al. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study, Acta Biomaterialia, 2010, vol. 6, issue 8, pp. 3264-3274. DOI: 10.1016/j.actbio.2010.02.034.
10. Fujiwara K., Okada M., Takeda S., Matsumoto N. A novel strategy for preparing nanoporous biphasic calcium phosphate of controlled composition via a modified nanoparticle-assembly method, Materials Science and Engineering: C, 2014, vol. 35, pp. 259-266. DOI: 10.1016/j.msec.2013.11.019.
11. Sánchez-Salcedo S., Arcos D., Vallet-Regí M. Upgrading calcium phosphate scaffolds for tissue engineering applications, Key Engineering Materials, 2008, vol. 377, pp. 19-42. DOI: 10.4028/www.scientific.net/KEM.377.19.
12. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Vliyanie fazy trikal'tsiifosfata na prochnost' gidroksiapatitovoi penokeramiki v protsesse termicheskogo otzhiga [Influence of tricalcium phosphate phase on the strength of hydroxyapatite foam ceramics in the thermal annealing process], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials], 2017, issue 9, pp. 264-270. DOI: 10.26456/pcascnn/2017.9.264. (In Russian).
13. Kokubo T., Kushitani H., Sakka S. et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A – W, Journal of Biomedical Materials Research, 1990, vol. 24, issue 6, pp. 721-734. DOI: 10.1002/jbm.820240607.
14. Baino F., Yamaguchi S. The Use of Simulated Body Fluid (SBF) for Assessing Materials Bioactivity in the Context of Tissue Engineering: Review and Challenges, Biomimetics, 2020, vol. 5, issue 4, art. no. 57, 19 p. DOI: 10.3390/biomimetics5040057.
15. Kokubo T., Yamaguchi S. Simulated body fluid and the novel bioactive materials derived from it, Journal of Biomedical Materials Research Part A, 2019, vol. 107, issue 5, pp. 968-977. DOI: 10.1002/jbm.a.36620.
16. Krut’ko V.K., Kulak A.I., Musskaya O.N., Lesnikovich J.A. Sinteticheskii gidroksiapatit – osnova kostnozameshchayushchikh biomaterialov [Synthetic Hydroxyapatite – Base of Artificial Bone Biomaterials], Sofiya: elektronnyj nauchno-prosvetitel'skij zhurnal [Sofia: electronic scientific and educational journal], 2017, no. 1, pp. 50-57. (In Russian).
17. Musskaya O.N., Kulak A.I., Krut’ko V.K. et al. Preparation of bioactive mesoporous calcium phosphate granules, Inorganic Materials, 2018, vol. 54, issue 2, pp. 117-124. DOI: 10.1134/S0020168518020115.
18. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Termicheskaya ehvolyutsiya kal'tsiifosfatnoi penokeramiki, poluchennoi na osnove gidroksiapatita i monokal'tsiifosfata monogidrata [Thermal evolution of calcium phosphate foam ceramics obtained on the basis of hydroxyapatite and monocalcium phosphate of monohydrate], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials], 2019, issue 11, pp. 615-623. DOI: 10.26456/pcascnn/2019.11.615. (In Russian).
19. Krut’ko V.K., Musskaya O.N., Kulak A.I. et al. Kal'tsiifosfatnaya penokeramika s reguliruemoi bioaktivnost'yu [Calcium phosphate foam ceramics with regulated bioactivity], Fiziko khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials], 2018, issue 10, pp. 374-382. DOI: 10.26456/pcascnn/2018.10.374. (In Russian).
20. Krut’ko V.K., Musskaya O.N., Kulak A.I. et al. Calcium phosphate foam ceramic based on hydroxyapatite–brushite powder mixture, Glass and Ceramics, 2019, vol. 76, issue 3-4, pp. 113-118. DOI: 10.1007/s10717-019-00145-y.
21. Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, vol. 27, issue 15, pp. 2907-2915. DOI: 10.1016/j.biomaterials.2006.01.017.
22. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 15.06.2021).
23. Huang Y., Huang W., Sun L. et al. Phase transition from α -TCP into β -TCP in TCP / HA composites, International Journal of Applied Ceramic Technology, 2010, vol. 7, issue 2, pp. 184-188. DOI: 10.1111/j.1744- 7402.2009.02384.x.
24. Kim D.H., Chun H.H., Lee J.D., Yoon S.-Y. Evaluation of phase transformation behavior in biphasic calcium phosphate with controlled spherical micro-granule architecture, Ceramics International, 2014, vol. 40, issue 4, pp. 5145-5155. DOI: 10.1016/j.ceramint.2013.10.064.
25. Maciejewski M., Brunner T.J., Loher S.F. et al. Phase transitions in amorphous calcium phosphates with different / Ca P ratios, Thermochimica Acta, 2008, vol. 468, issue 1-2, pp. 75-80. DOI: 10.1016/j.tca.2007.11.022.
26. Kim H.M., Himeno T., Kawashita M. et al. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment, Journal of The Royal Society Interface, 2004, vol. 1, issue 1, pp. 17-22. DOI: 10.1098/rsif.2004.0003.
27. Kokubo T., Himeno T., Kim H.M. et al. Process of bonelike apatite formation on sintered hydroxyapatite in serum-containing SBF, Key Engineering Materials, 2004, vol. 254-256, pp. 139-142. DOI: 10.4028/www.scientific.net/KEM.254-256.139.
28. Kokubo T., Ohtsuki C., Kotani S. et al. Surface structure of bioactive glass-ceramic A – W implanted into sheep and human vertebra, Bioceramics, vol. 2, ed. by G. Heimke. Cologne, German Ceramic Society, 1990, pp. 113-120.
29. Bano S., Romero R., Grant D.M. et al. In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray, Surface and Coatings Technology, 2021, vol. 407, art. no. 126764, 13 p. DOI: 10.1016/j.surfcoat.2020.126764.
30. Gao Ch., Wei P., Feng P. et al. Nano SiO2 and MgO improve the properties of porous β -TCP scaffolds via advanced manufacturing technology, International Journal of Molecular Sciences, 2015, vol. 16, issue 4, pp. 6818-6830. DOI: 10.3390/ijms16046818.

⇐ Prevoius journal article | Content | Next journal article ⇒