Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Apatites formation on electrodeposited calcium phosphates in the Ca(NO3)2 / NH4H2PO4 and CаCO3 / Ca(H2PO4)2 systems

V.K. Krut’ko1, A.E. Doroshenko1, O.N. Musskaya1, S.M. Rabchynski2, A.I. Kulak1

1 Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus
2 Belarusian State University

DOI: 10.26456/pcascnn/2021.13.860

Original article

Abstract: Calcium phosphate coatings on titanium plates were obtained by electrochemical deposition at room temperature in a two-electrode cell at a constant current density of 30 mA/sm2 and a deposition time of 10 min, and brushite coatings from Ca(NO3)2/NH4H2PO4 system at pH = 4, and composite (brushite/calcite/apatite) coatings from the CaCO3/Ca(H2PO4)2 system at pH = 5. The apatite-forming ability (bioactivity) was determined by soaking both types of calcium phosphate coatings in a model SBF solution during month. The newly formed amorphized apatite layer after heat treatment at 800 °С crystallized into β –tricalcium phosphate/hydroxyapatite on brushite coatings and hydroxyapatite on composite coatings due to the presence of calcite, whose carbonate ions initiate formation of hydroxyapatite, as well as apatite nanoparticles in the initial coating. The obtained calcium phosphate coatings are promising as biocoatings capable to increase osseointegration of metal implants.

Keywords: calcium phosphate coatings, brushite, calcite, SBF model solution, apatite, hydroxyapatite

  • Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus
  • Anna E. Doroshenko – Junior Researcher of Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus
  • Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher of Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus
  • Sergey M. Rabchynski – Ph. D., Assistant Professor, Department of Electrochemistry, Belarusian State University
  • Anatoly I. Kulak – Corresponding Member, D. Sc., Professor, Director, Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus

Reference:

Krut’ko, V.K. Apatites formation on electrodeposited calcium phosphates in the Ca(NO3)2 / NH4H2PO4 and CаCO3 / Ca(H2PO4)2 systems / V.K. Krut’ko, A.E. Doroshenko, O.N. Musskaya, S.M. Rabchynski, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 860-869. DOI: 10.26456/pcascnn/2021.13.860. (In Russian).

Full article (in Russian): download PDF file

References:

1. Dorozhkin S.V. Calcium orthophosphates (CaPO4): occurrence and properties. Review paper, Progress in Biomaterials, 2016, vol. 5, issue 1, pp. 9-70. DOI: 10.1007/s40204-015-0045-z.
2. Nakai M., Niinomi H., Saito K., Goto T. Calcium phosphate coating of biomedical titanium alloys using metal–organic chemical vapour deposition, Materials Technology, 2015, vol. 30, issue sup5: part B1, pp. 8-12. DOI: 10.1179/1753555714Y.0000000228.
3. Krut'ko V.K., Kulak A.I., Musskaya O.N., Ulasevich S.A., Modifikatsiya poverkhnosti apatit-polimernykh pokrytii ul'trafioletovym oblucheniem [Surface modification of apatite-polymer coatings by ultraviolet radiation], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2016, issue 8, pp. 195-201. (In Russian).
4. Prosolov K., Popova K., Belavskaya O. et al. RF magnetron-sputtered coatings deposited from biphasic calcium phosphate targets for biomedical implant, Bioactive Materials, 2017, vol. 2, issue 3, pp. 170-176. DOI: 10.1016/j.bioactmat.2017.07.003.
5. Krut'ko, V.K., Kulak A.I., Musskaya O.N., Lesnikovich L.A., Ulasevich S.A., Ehlektrokhimicheskoe osazhdenie kal'tsiifosfatnykh pokrytii na titanovoi i uglerodnykh podlozhkakh [Electrochemical deposition of calcium phosphate coatings onto titanium and carbon substrates], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2014, issue 6, pp. 214-219. (In Russian).
6. Wolf-Brandstetter C., Beutner R., Hess R. et al. Multifunctional calcium phosphate based coatings on titanium implants with integrated trace elements, Biomedical Materials, 2019, vol. 15, no. 2, pp. 2-30. DOI: 10.1088/1748-605X/ab5d7b.
7. Takashi G., Hirokazu K. Chemical vapor deposition of Ca–P–O film coating, Interface Oral Health Science. Innovative Research on Biosis-Abiosis Intelligent Interface: Conference proceedings, ed. by K. Sasaki, O. Suzuki, N. Takahashi. Tokyo, Heidelberg, New York, Dordrecht, London, Springer, 2014, pp. 103-115. DOI: 10.1007/978-4-431-55192-8_9.
8. Lin X. Chen J., Liao Y., Pathak J. Biomimetic calcium phosphate coating as a drug delivery vehicle for bone tissue engineering: a mini-review, Coatings, 2020, vol. 10, issue 11, pp. 1-19. DOI: 10.3390/coatings10111118.
9. Surmenev R., Surmeneva M., Ivanova A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – a review, Acta Biomaterials, 2014, vol. 10, issue. 2, pp. 1-106. DOI: 10.1016/j.actbio.2013.10.036.
10. Basu S., Basu B. Unravelling doped biphasic calcium phosphate: synthesis to application, ACS Applied Bio Materials, 2019, vol. 12, issue 2, pp. 5263-5297. DOI: 10.1021/acsabm.9b00488.
11. Venugopal J., Prabhakaran M., Zhang Y. et al. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, vol. 368, issue 1917, pp. 2065-2081. DOI: 10.1098/rsta.2010.0012.
12. Szczes A., Holysz L., Chibowski E. Synthesis of hydroxyapatite for biomedical applications, Advances in Colloid and Interface Science, 2017, vol. 249. pp. 321-330. DOI: 10.1016/j.cis.2017.04.007.
13. Li Y., Weng W., Tam K.C. Novel highly biodegradable biphasic tricalcium phosphates composed of α -tricalcium phosphate and β -tricalcium phosphate, Acta Biomaterials, 2007, vol. 3, issue 2, pp. 251-254. DOI: 10.1016/j.actbio.2006.07.003.
14. Bohner M. New hydraulic cements based on alpha-tricalcium phosphate-calcium sulfate dihydrate mixtures, Biomaterials, 2004, vol. 25, issue 4, pp. 741-749. DOI: 10.1016/s0142-9612(03)00573-8.
15. Ren D., Ruan Q., Tao J. et al. Amelogenin affects brushite crystal morphology and promotes its phase transformation to monetite, Crystal Growth Design, 2016, vol. 16, issue 9, pp. 4981-4990. DOI: 10.1021/acs.cgd.6b00569.
16. Zhang J., Wang L., Putnis C. Underlying role of brushite in pathological mineralization of hydroxyapatite, Journal of Physical Chemistry B, 2019, vol. 123, issue 13, pp. 2874-2881. DOI: 10.1021/acs.jpcb.9b00728.
17. Jalota S., Bhaduri B., Tas A. Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions, Journal of Material Science, 2006, vol. 17, issue 8, pp. 697-707. DOI: 10.1007/s10856-006-9680-1.
18. Kokubo T., Takadama H. Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants, Handbook of Biomineralization: Biological Aspects and Structure Formation, ed. by E. Epple, E. Bäuerlein, Weinheim, WILEY‐ VCH Verlag GmbH & Co. KGaA, 2007, chapter 7, pp. 97-109. DOI: 10.1002/9783527619443.ch51.
19. Escada A., Machado J., Schneider S., Alves Rezende M., Alves Claro A. Biomimetic calcium phosphate coating on Ti–7,5Mo alloy for dental application, Journal of Materials Science: Materials in Medicine, 2011, vol. 22, issue 11, pp. 2457-2465. DOI: 10.1007/s10856-011-4434-0.
20. Krut'ko, V.K., Kulak A.I., Musskaya O.N. Ehlektrokhimicheskoe osazhdenie apatit-polimernykh pokrytii na poverkhnosti titana [Electrochemical deposition of apatite-polymer coatings on titanium surface], Fiziko- khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2015, issue 7, pp. 322-328. (In Russian).
21. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 15.06.2021).
22. Dobelin N., Brunner T., Stark W., Conforto E., Bohner M. Thermal treatment of flame‐ synthesized amorphous tricalcium phosphate nanoparticles, Journal of the American Ceramic Society, 2010, vol. 93, issue 10, pp. 3455-3463. DOI: 10.1111/j.1551-2916.2010.03856.x.
23. Krut'ko, V. K., Musskaya O.N., Kulak A.I., Doroshenko A.E. Ehlektrokhimicheskii sintez kal'tsiifosfatov na poverkhnosti titana [Electrochemical synthesis of calcium phosphates on the titanium surface], Materialy XIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Novye materialy i tekhnologii: poroshkovaya metallurgiya, kompozitsionnye materialy, zashchitnye pokrytiya, svarka» (Minsk, 9-11.09.2020) [Materials of the 14th International Scientific and Technical Conference «New materials and technologies: powder metallurgy, composite materials, protective coatings, welding», Minsk, September, 9-11, 2020], Minsk, Belaruskaya navuka, 2020, pp. 494-497. (In Russian).
24. Bui, X Synthesis and characterization of HA/ β ‐ TCP bioceramic powder, Vietnam Journal of Chemistry, 2018, vol. 56, issue 2, pp. 152-155. DOI: 10.1002/vjch.201800004.

⇐ Prevoius journal article | Content | Next journal article ⇒