Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Carbon nanoparticles based on thermally expanded graphite: effect of the TEG obtaining route on the particles morphology

E.V. Raksha1, V.A. Glazunova2, O.N. Oskolkova1, P.V. Sukhov1, G.K. Volkova2, A.A. Davydova1, Yu.V. Berestneva3, M.V. Savoskin1

1 L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
2 Donetsk Institute for Physics and Engineering named after A.A. Galkin
3 Complex Melioration and Protective Afforestation of the Russian Academy of Sciences

DOI: 10.26456/pcascnn/2021.13.777

Original article

Abstract: The paper presents the investigation results of the morphology of carbon nanoparticles formed during liquid-phase exfoliation of thermally expanded graphite in tert-butanol. The thermally expanded graphite used in this work was obtained by thermal expansion of graphite nitrate with acetic and formic acids in the thermal shock mode at 500 °C and 900 °C. Initial cointercalate was shown by powder X-ray diffraction analysis to be the mixture of the IInd and the IVth stage intercalation compounds. It has been established by transmission electron microscopy that dispersions of carbon nanoparticles formed during the exfoliation of thermally expanded graphite in tert-butanol via sonication contain mainly few-layer graphenes, the planar dimensions of which reach 8 μm. The influence of the conditions for thermally expanded graphite obtaining on the morphology of resulting carbon nanoparticles is discussed. Dispersions based on thermally expanded graphite obtained at a lower temperature, in addition to few-layer graphenes, also contain a significant amount of amorphous carbon particles with planar sizes up to 100 nm.

Keywords: few-layer graphenes, liquid-phase exfoliation, graphite nitrate, cointercalation

  • Elena V. Raksha – Ph. D., Senior Researcher, Supramolecular Chemistry Department, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Valentina A. Glazunova – Researcher, Department of Physics and Engineering of High Pressure and Advanced Technologies, Donetsk Institute for Physics and Engineering named after A.A. Galkin
  • Oksana N. Oskolkova – Junior Researcher, Supramolecular Chemistry Department, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Petr V. Sukhov – Junior Researcher, Supramolecular Chemistry Department, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Galina K. Volkova – Researcher, Department of Physics and Engineering of High Pressure and Advanced Technologies, Donetsk Institute for Physics and Engineering named after A.A. Galkin
  • Alina A. Davydova – Junior Researcher, Supramolecular Chemistry Department, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry
  • Yulia V. Berestneva – Senior Researcher, Biotechnology Laboratory, Federal Scientific Centre of Agroecology, Complex Melioration and Protective Afforestation of the Russian Academy of Sciences
  • Michael V. Savoskin – Ph. D., Director, L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

Reference:

Raksha, E.V. Carbon nanoparticles based on thermally expanded graphite: effect of the TEG obtaining route on the particles morphology / E.V. Raksha, V.A. Glazunova, O.N. Oskolkova, P.V. Sukhov, G.K. Volkova, A.A. Davydova, Yu.V. Berestneva, M.V. Savoskin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 777-787. DOI: 10.26456/pcascnn/2021.13.777. (In Russian).

Full article (in Russian): download PDF file

References:

1. Obraztsova E.Yu., Barshutina M.N., Bakunin E.S. et al. Adsorption characteristics of nanographite oxide obtained from thermally expanded graphite, Mendeleev Communications, 2020, vol. 30, issue 2, pp. 174-176. DOI: 10.1016/j.mencom.2020.03.014.
2. Frąc M., Pichór W., Szołdra P., Szudek W. Cement composites with expanded graphite/paraffin as storage heater, Construction and Building Materials, 2021, vol. 275, art. no. 122126, 10 p. DOI: 10.1016/j.conbuildmat.2020.122126.
3. Asalieva E., Sineva L., Sinichkina S. et al. Exfoliated graphite as a heat-conductive frame for a new pelletized Fischer-Tropsch synthesis catalyst, Applied Catalysis A: General, 2020, vol. 601, art. no. 117639, 11 p. DOI: 10.1016/j.apcata.2020.117639.
4. Chriaa I., Karkri M., Trigui A., Jedidi I., Abdelmouleh M., Boudaya C. The performances of expanded graphite on the phase change materials composites for thermal energy storage, Polymer, 2021, vol. 212, art. no. 123128, 11 p. DOI: 10.1016/j.polymer.2020.123128.
5. Dai C., Gu C., Liu B. et al. Preparation of low-temperature expandable graphite as a novel steam plugging agent in heavy oil reservoirs, Journal of Molecular Liquids, 2019, vol. 293, art. no. 111535, 9 p. DOI: 10.1016/j.molliq.2019.111535.
6. Yakovlev A.V., Finaenov A.I., Zabud’kov S.L., Yakovleva E.V. Thermally expanded graphite: synthesis, properties, and prospects for use, Russian Journal of Applied Chemistry, 2006, vol. 79, issue 11, pp. 1741-1751. DOI: 10.1134/S1070427206110012.
7. Nyssanbayeva G., Kudaibergenov K., Ongarbayev Y., Mansurov Z., Di Capua R. Preparation of expanded graphite using a thermal method, IOP Conference Series: Materials Science and Engineering, 2018, vol. 323, art. no. 012012, 6 p. DOI: 10.1088/1757-899X/323/1/012012.
8. Ivanov A.V., Maksimova N.V., Kamaev A.O., Malakho A.P., Avdeev V.V. Influence of intercalation and exfoliation conditions on macrostructure and microstructure of exfoliated graphite, Materials Letters, 2018, vol. 228, pp. 403-406. DOI: 10.1016/j.matlet.2018.06.072.
9. Ivanov A.V., Maksimova N.V., Manylov M.S. et al. Gas permeability of graphite foil prepared from exfoliated graphite with different microstructures, Journal of Materials Science, 2021, vol. 56, issue 6, pp. 4197- 4211. DOI: 10.1007/s10853-020-05541-2.
10. Sorokina N.E., Redchitz A.V., Ionov S.G., Avdeev V.V. Different exfoliated graphite as a base of sealing materials, Journal of Physics and Chemistry of Solids, 2006, vol. 67, issue 5-6, pp. 1202-1204. DOI: 10.1016/j.jpcs.2006.01.048.
11. Chen P.-H., Chung D.D.L. Viscoelastic behavior of the cell wall of exfoliated graphite, Carbon, 2013, vol. 61, pp. 305-312. DOI: 10.1016/j.carbon.2013.05.009.
12. Afanasova I.M., Shornikova O.N., Kirilenko D.А. et al. Graphite structural transformations during intercalation by HNO3 and exfoliation, Carbon, 2010, vol. 48, issue 6, pp. 1862-1865. DOI: 10.1016/j.carbon.2010.01.055.
13. Savoskin M.V., Yaroshenko A.P., Whyman G.E., Mysyk R.D. New graphite nitrate derived intercalation compounds of higher thermal stability, Journal of Physics and Chemistry of Solids, 2006, vol. 67, issue 5-6, pp. 1127-1131. DOI: 10.1016/j.jpcs.2006.01.034.
14. Davydova A.A., Raksha E.V., Oskolkova O.N. et al. Maloslojnye grafenovye chastitsy na osnove termorasshirennogo sointerkalata nitrata grafita s uksusnoj i murav'inoj kislotami [Few-layer graphene particles based on thermally expanded cointercalate of graphite nitrate with acetic and formic acids] Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 580-590. DOI: 10.26456/pcascnn/2020.12.580. (In Russian).
15. Raksha E.V., Davydova A.A., Berestneva Yu.V. et al. Morphology and structure of carbon nanoparticles generated from graphite nitrate co-intercalation compound. Effect of sonication regime, Advanced Materials, Proceedings of the International Conference on «Physics and Mechanics of New Materials and Their Applications», PHENMA 2019, vol. 6, ed. by I.A. Parinov, Sh.H. Chang, B.T. Long. Cham, Springer International Publishing, 2020, chapter 4, pp. 41-47. DOI: 10.1007/978-3-030-45120-2_4.
16. Raksha E., Davydova A., Oskolkova O. et al. Carbon nanoparticles from graphite nitrate cointercalation compounds with carboxylic acids, Physics and Mechanics of New Materials and Their Applications. PHENMA 2021. Springer Proceedings in Materials, vol. 10, ed. by I.A. Parinov, SH. Chang, YH. Kim, N.A. Noda. Cham, Springer, 2021, chapter 4, pp. 37-45. DOI: 10.1007/978-3-030-76481-4_4.
17. Davydova A.A., Raksha E.V., Glazunova V.A. et al. Synthesis and properties of graphite nitrate cointercalation compounds with carboxylic acid esters, Russian Journal of Inorganic Chemistry, 2021, vol. 66, issue 3, pp. 324-331. DOI: 10.1134/S0036023621030062.
18. Berestneva Yu.V., Raksha E.V., Voitash A.A., Arzumanyan G.M., Savoskin M.V. Thermally expanded graphite from graphite nitrate cointercalated with ethyl formate and acetic acid: morphology and physicochemical properties, Journal of Physics: Conference Series, 2020, vol. 1658, art. no. 012004, 10 p. DOI: 10.1088/1742-6596/1658/1/012004.
19. Voitash A.A., Raksha E.V., Davydova A.A. et al. Thermally expanded graphite: sorption properties and carbon nanoparticles obtaining, Physics and Mechanics of New Materials and Their Applications. PHENMA 2021. Springer Proceedings in Materials, vol. 10, ed. by I.A. Parinov, S.H. Chang, Y.H. Kim, N.A. Noda. Cham: Springer, 2021, chapter 5, pp. 47-52. DOI: 10.1007/978-3-030-76481-4_5.
20. Berestneva Yu.V., Voitash A.A., Raksha E.V. et al. Otsenka vozmozhnosti primeneniya termorasshirennogo grafita dlya ochistki zagryaznennykh prirodnykh vod [Assessment of the possibility of thermally expanded graphite application for polluted natural waters purification], Khimicheskaya Bezopasnost’ [Chemical Safety Science], 2021, vol. 5, issue 1, pp. 110-124. DOI: 10.25514/CHS.2021.1.19007. (In Russian)
21. Voitash A.A., Berestneva Yu.V., Raksha E.V. et al. Issledovanie sorbtsii aromaticheskikh soedinenij iz vodnykh rastvorov termorasshirennym grafitom [Study of sorption of aromatic compounds from aqueous solutions by thermally expanded graphite], Khimicheskaya Bezopasnost’ [Chemical Safety Science], 2020, vol. 4, issue 1, pp. 144-156. DOI: 10.25514/CHS.2021.1.19007. (In Russian)
22. Bourlinos A.B., Georgakilas V., Zboril R., Steriotis T.A., Stubos A.K. Liquid-phase exfoliation of graphite towards solubilized graphenes, Small, 2009, vol. 5, issue 16, pp. 1841-1845. DOI: 10.1002/smll.200900242.
23. Hernandez Y., Nicolosi V., Lotya M. et al. High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology, 2008, vol. 3, pp. 563-568. DOI: 10.1038/nnano.2008.215.
24 Li Zh., Young R.J., Backes C. et al. Mechanisms of liquid-phase exfoliation for the production of graphene, ACS Nano, 2020, vol. 14, issue 9, pp. 10976-10985. DOI: 10.1021/acsnano.0c03916.
25. Tyurnina A., Tzanakis I., Morton J. et al. Ultrasonic exfoliation of graphene in water: a key parameter study, Carbon, 2020, vol. 168, pp. 737-747. DOI: 10.1016/j.carbon.2020.06.029.
26. Tapia J.I., Larios E., Bittencourt C., Yacamán M.J., Quintana M. Carbon nano-allotropes produced by ultrasonication of few-layer graphene and fullerene, Carbon, 2016, vol. 99. pp. 541-546. DOI: 10.1016/j.carbon.2015.12.071.
27. Gomez K.V., Guevara M., Tene T. et al. The liquid exfoliation of grapheme in polar solvents, Applied Surface Science, 2021, vol. 546, art. no. 149046, 13 p. DOI: 10.1016/j.apsusc.2021.149046.
28. Tapia, J.I., Quintana M. Chemical manipulation of graphene in dispersions, Handbook of carbon nano materials, vol. 5-6, ed. by F. D'Souza, K.M. Kadish. New Jersey: World Scientific Publishing, 2014, chapter 3, pp. 185-217. DOI: 10.1142/9789814566704_0003.

⇐ Prevoius journal article | Content | Next journal article ⇒