Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Formation of sol-gel catalytic coatings to improve the ecological parameters of intermetallic porous burners

A.A. Ponomareva1,2, V.E. Sitnikova1, K.A. Tсoi2

1 ITMO University
2 Far Eastern Federal University

DOI: 10.26456/pcascnn/2021.13.760

Original article

Abstract: The environmental parameters of power equipment are important in terms of minimizing the negative impact on the environment. Intermetallic infrared porous flameless burners are a new generation of burners with improved performance. Gas burners are among the most efficient devices for direct conversion of combustion heat into infrared energy. Despite the improved environmental characteristics of infrared porous burners compared to traditional burners, during operation they can emit unwanted and hazardous combustion products of gas mixtures (or other fuels), especially during transient and high-power modes. In this work, catalytic coatings based on cerium-based oxide systems with a small addition of silicon oxides were obtained. The deposition of the catalytic material on porous intermetallic substrates was controlled using the gravimetric method, optical analysis system, and scanning electron microscopy, and its chemical structure was investigated using IR spectroscopy. The uniform distribution of the coating over the substrate surface and the correspondence of the IR peaks with the chemical composition of the synthesized systems were detected.

Keywords: catalytic coatings, metal oxide structures, porous burners, sol-gel technology, infrared spectroscopy

  • Alina A. Ponomareva – Ph. D., Docent, Center for Chemical Engineering, ITMO University, Senior Researcher, International Combustion and Energy Laboratory Far Eastern Federal University
  • Vera E. Sitnikova – Ph. D., Docent, Center for Chemical Engineering, ITMO University
  • Konstantin A. Tсoi – Senior Lecturer, Department of Energy Systems of the Polytechnic Institute, Far Eastern Federal University

Reference:

Ponomareva, A.A. Formation of sol-gel catalytic coatings to improve the ecological parameters of intermetallic porous burners / A.A. Ponomareva, V.E. Sitnikova, K.A. Tсoi // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 760-768. DOI: 10.26456/pcascnn/2021.13.760. (In Russian).

Full article (in Russian): download PDF file

References:

1. Minaev S.S., Gushchin A.N., Tcoj K.A. et al. Radiacionnaya gazovaya gorelka [Radiation gas burner], Patent RF 2640305, 2017. (In Russian).
2. Yakovlev I., Maznoy A., Zambalov S. Pore-scale study of complex flame stabilization phenomena in thin- layered radial porous burner, Combustion and Flame, 2021, vol. 231, art. no. 111468, 18 p. DOI: 10.1016/j.combustflame.2021.111468.
3. Maznoy A., Pichugin N., Yakovlev I. et al. Fuel interchangeability for lean premixed combustion in cylindrical radiant burner operated in the internal combustion mode, Applied Thermal Engineering, 2020, vol. 186, art. no. 115997, 14 p. DOI: 10.1016/j.applthermaleng.2020.115997.
4. Maznoy A., Kirdyashkin A., Pichugin N. et al. Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications, Energy, 2020, vol. 204, art. no. 117965, 11 p. DOI: 10.1016/j.energy.2020.117965.
5. Gangopadhyay Sh., Frolov D.D., Masunov A.E. et al. Structure and properties of cerium oxides in bulk and nanoparticulate forms, Journal of Alloys and Compounds, 2013, vol. 584, pp. 199-208. DOI: 10.1016/j.jallcom.2013.09.013.
6. Rodriguez J.A., Grinter D.C., Liu Z. et al. Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming, Chemical Society Reviews, 2017, vol. 46, issue 7, pp. 1824-1841. DOI: 10.1039/C6CS00863A.
7. Jung C.R., Han J., Nam S.W. et al. Selective oxidation of CO over CuO–CeO2 catalyst: effect of calcination temperature, Catalysis Today, 2004, vol. 93-95, pp. 183-190. DOI: 10.1016/j.cattod.2004.06.039.
8. Burange A.S., Jayaram R.V., Shukla R., Tyagi A.K. Oxidation of benzylic alcohols to carbonyls using tert- butyl hydroperoxide over pure phase nanocrystalline CeCrO3, Catalysis Communications, 2013, vol. 40, pp. 27-31. DOI: 10.1016/j.catcom.2013.05.019.
9. Liu Z., Grinter D.C., Lustemberg P.G. et al. Dry reforming of methane on a highly-active Ni–CeO2 catalyst: Effects of metal-support interactions on C–H bond breaking, Angewandte Chemie International Edition, 2016, vol. 55, issue 26, pp. 7455-7459. DOI: 10.1002/anie.201602489.
10. Marinho A.L.A. Development of catalytic process for biogas upgrading study of structure and oxygen mobility on Ni and Pt nanoparticles encapsulated catalysts. Doctor’s thesis in Catalysis. Universidade federal do Rio de Janeiro, 2020. 222 p.
11. Triguba A.M., Tcoj K.A., Ponomareva A.A. Vliyanie nanostrukturnogo katalizatora na osnove dioksida ceriya na ekologicheskie harakteristiki poristyh grelok [Influence of a nanostructured catalyst based on cerium dioxide on the ecological characteristics of porous heating pads], Nauka nastoyashchego i budushchego [Science of the present and the future], 2018, vol. 1, pp. 646-648. (In Russian).
12. Labhasetwar N., Saravanan G., Megarajan S.K., et al. Perovskite-type catalytic materials for environmental applications, Science and Technology of Advanced Materials, 2015, vol. 16, art. no. 036002, 13 p. DOI: 10.1088/1468-6996/16/3/036002.
13. Zhao K., He F., Huang Z. et al. CaO/MgO modified perovskite type oxides for chemical-looping steam reforming of methane, Journal of fuel chemistry and technology, 2016, vol. 44, issue 6, pp. 680-688. DOI: 10.1016/S1872-5813(16)30032-9.
14. Khan R., Mehran M.T., Naqvi S.R. et al. Role of perovskites as a bi-functional catalyst for electrochemical water splitting: A review, International journal of energy research, 2020, vol. 44, issue 12, pp. 9714-9747. DOI: 10.1002/er.5635.
15. Zhang J., Li F. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane, Applied Catalysis B: Environmental, 2015, vol. 176-177, pp. 513-521. DOI: 10.1016/j.apcatb.2015.04.039.
16. Sochugov N.S., Sigfusson T.I., Solovyev A.A. et al. Advanced fuel cell development in Russia, Energy Procedia, 2012, vol. 29, pp. 594-605. DOI: 10.1016/j.egypro.2012.09.069.
17. Solovyev A.A., Rabotkin S.V., Shipilova A.V. et al. Solid oxide fuel cell with Ni–Al support, International Journal of Hydrogen Energy, 2015, vol. 40, issue 40, pp. 14077-14084. DOI: 10.1016/j.ijhydene.2015.07.151.
18. Maznoy A., Kirdyashkin A., Minaev S., et al. A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni–Al burners, Energy, 2018, vol. 160, pp. 399-409. DOI: 10.1016/j.energy.2018.07.017.
19. Fursenko R., Maznoy A., Odintsov E., et al. Temperature and radiative characteristics of cylindrical porous Ni–Al burners, International Journal of Heat and Mass Transfer, 2016, vol. 98, pp. 277-284. DOI: 10.1016/j.ijheatmasstransfer.2016.03.048.
20. Kumar E., Selvarajan P., Balasubramanian K. Preparation and studies of cerium dioxide (CeO2) nanoparticles by microwave-assisted solution method, Recent Research in Science and Technology, 2010, vol. 2, issue 4, pp. 37-41.
21. Kundu S., Sutradhar N., Thangamuthu R. et al. Fabrication of catalytically active nanocrystalline samarium ( Sm )-doped cerium oxide ( CeO2 ) thin films using electron beam evaporation, Journal of Nanoparticle Research, 2012, vol. 14, issue 8, art. no. 1040, 16 p. DOI: 10.1007/s11051-012-1040-0
22. Pop O.L., Diaconeasa Z., Mesaroş A. et al. FT-IR studies of cerium oxide nanoparticles and natural zeolite material, Bulletin UASVM Food Science and Technology, 2015, vol. 72, issue 1, pp. 50-55. DOI: 10.15835/buasvmcn-fst:11030.
23. Silicon compounds: silanes & silicones, ed. by B. Arkles, P.J. Launer, 3rd ed. Morrisville, Gelest Inc., 2013, 608 p.
24. Zaid M.H.M., Sidek H.A.A., El-Mallawany R. et al. Synthesis and characterization of samarium doped calcium soda–lime–silicate glass derived wollastonite glass–ceramics, Journal of materials research and technology, 2020, vol. 9, issue 6, pp. 13153-13160. DOI: 10.1016/j.jmrt.2020.09.058.
25. Zheng X., Li X., Peng H., Wen J. Ag -decorated core-shell Sm2O3@TiO2 nanocomposites with enhanced visible-light photocatalytic performance, Journal of Physics and Chemistry of Solids, 2018, vol. 123, pp. 206–215. DOI: 10.1016/j.jpcs.2018.07.022.
26. Njoku C.B., Omondi B., Ndungu P.G. Physical chemical properties of Ce0,8Sm0,2IryCo1-yO3-δ (y=0,03– 0,04) and preliminary testing as cathode material for low-temperature SOFC, South African Journal of Chemistry, 2017, vol. 70, pp.171-180. DOI: 10.17159/0379-4350/2017/v70a24.
27. Mahdi B.A., Maki A. A., Abdulnabi Z.A., Altaee A. Biosorption of lead from industrial wastewater using some part of date palm trees, Pollution Research, 2019, vol. 38, issue 4, pp. 853-861.
28. Maksimov A.I., Moshnikov V.A., Tairov Yu.M. et al. Osnovy zol'-gel'-tekhnologii nanokompozitov [Fundamentals of sol-gel nanocomposite technology], Saint Petersburg, Elmor Publ., 2008, 255 p. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒