Dynamics of response of a sensor based on a nanostructured tin dioxide layer exposed to the isopropanol vapors
N.A. Klychkov, V.V. Simakov, I.V. Sinev, D.A. Timoshenko
Saratov State University
DOI: 10.26456/pcascnn/2021.13.708
Original article
Abstract: Nanostructured gas-sensitive tin dioxide films have been synthesized by sol-gel technology. A conductivity vs temperature dependence of a gas sensor into atmosphere of synthetic air has been investigated. A response vs temperature dependence of a gas sensor into atmosphere of isopropanol vapors with various concentrations has been investigated. Local minimum on the temperature dependence of the tin dioxide film conductivity in clean air atmosphere were observed. A decrease in conductivity with increase temperature in the range of 300…350 °C can be associated with a dissociation molecular form of the adsorbed oxygen. At temperatures above 350 °C, conductivity increases because of desorption of the atomic form of the adsorbed oxygen on the surface of gas-sensitive tin dioxide film. The greatest response value is achieved at a sensor temperature equal to 350 °C. It is proposed that the reason is a domination of the atomic form of the chemisorbed oxygen on the surface. The analysis of response time vs concentration and response time vs temperature of gas sensor has been carried out. Sensor response time decreases monotonically with increase admixture substance in gas-probes, apparently because of increase in adsorption rate admixture particles on the surface of gas-sensitive film. It was found that the dependence of the response time on the operating temperature has an Arrhenius form. This may be associated with thermally activated adsorption-desorption processes and heterogeneous chemical reactions on the surface of sensor active layer.
Keywords: sol-gel method, nanostructured films, tin dioxide, gas sensor response time
- Nikita A. Klychkov – graduate student, Materials Sciences and Technologies and Quality Management Departmen, Saratov State University
- Viacheslav V. Simakov – Dr. Sc., Professor, Materials Sciences and Technologies and Quality Management Departmen, Saratov State University
- Ilya V. Sinev – Ph. D., Associate Professor, Materials Sciences and Technologies and Quality Management Department, Saratov State University
- Dmitrii A. Timoshenko – postgraduate student, Materials Sciences and Technologies and Quality Management Department, Saratov State University
Reference:
Klychkov, N.A. Dynamics of response of a sensor based on a nanostructured tin dioxide layer exposed to the isopropanol vapors / N.A. Klychkov, V.V. Simakov, I.V. Sinev, D.A. Timoshenko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 708-716. DOI: 10.26456/pcascnn/2021.13.708. (In Russian).
Full article (in Russian): download PDF file
References:
1. Korotcenkov G. Handbook of gas sensor materials. New York, Springer-Verlag, 2013, 442 p. DOI: 10.1007/978-1-4614-7165-3.
2. Simakov V.V., Voroshilov A.S., Galushka B.V. et al. Raspoznavanie zapakhov dyma na osnove analiza dinamiki otklika mul'tisensornoj mikrosistemy [Recognition of smoke odors based on the analysis of the dynamics of the response of a multisensor microsystem], Nano- i mikrosistemnaya tekhnika [Nano- and microsystems technology], 2012, no. 9 (146), pp. 49-54. (In Russian).
3. Smirnov A.V., Grebennikov A.I., Gribov A.N. et al. Otklik gazochuvstvitel'noj mikrosistemy na zapakh peregretoj izolyatsii elektricheskogo kabelya [Response of a gas-sensitive microsystem to the smell of overheated electrical cable insulation], Nano- i mikrosistemnaya tekhnika [Nano- and microsystems technology], 2014, no. 2 (163), pp. 53-56. (In Russian).
4. Sinev I.V., Klychkov N.A., Timoshenko D.A., Simakov V.V. Vliyanie osveshcheniya na raspoznavatel'nuyu sposobnost' mul'tisensornykh mikrosistem na osnove nitevidnykh nanokristallov dioksida olova [Illumination effect on recognition ability of multisensor microsystems based on tin oxide nanowhiskers], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, Issue 12, pp. 713-721. DOI: 10.26456/pcascnn/2020.12.713. (In Russian).
5. Li S.-H., Chu Z., Meng F.-F. et al. Highly sensitive gas sensor based on SnO2 nanorings for detection of isopropanol, Journal of Alloys and Compounds, 2016, vol. 688, part B, pp. 712-717. DOI: 10.1016/j.jallcom.2016.07.248.
6. Simakov V.V., Yakusheva O.V., Voroshilov A.S., Grebennikov A.I., Kisin V.V. Variation of the conductivity of a thin film of tin dioxide in response to stepwise gas sampling, Technical Physics Letters, 2006, vol. 32, no. 8, pp. 725-728. DOI: 10.1134/S1063785006080256.
7. Choi P.G., Izu N., Shirahata N., Masuda Y. Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crystal face, Sensors and Actuators B: Chemical, 2019, vol. 296, art. no. 126655, 8 p. DOI: 10.1016/j.snb.2019.126655.
8. Kushnarev B.O., Khludkova L.S. Gazochuvstvitel'nost' tonkoj plenki dioksida olova k param kerosina pri komnatnoj temperature [Gas-sensitivity of tin dioxide thin film to kerosene vapours at room temperature], Fiziko- khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, Issue 10, pp. 420-426. DOI: 10.26456/pcascnn/2018.10.420. (In Russian).
9. Sigaev A.P., Averin I.A., Karmanov A.A., Pronin I.A., Yakushova N.D. Issledovanie adsorbtsionnykh svojstv nanostrukturirovannykh plyonok na osnove dioksida olova [Study of adsorption properties of nanostructured films based on tin dioxide], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 162-169. DOI: 10.26456/pcascnn/2020.12.162. (In Russian).
10. Redel L.V., Gafner S.L., Komp'yuternyj analiz sensornykh svojstv nanostrukturirovannykh SnO2 plenok. 1. Raschet provodimosti gazovogo sensora na osnove nanochastits SnO2 [Computer analysis of the sensory properties of nanostructured SnO2 films. 1. Calculation of conductivity in gas sensors based on SnO2 nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, Issue 9, pp. 383-389. DOI:10.26456/pcascnn/2017.9.383. (In Russian).
11. Grundler P. Chemical sensors: an introduction for scientists and engineers. Berlin, Heidelberg, Springer- Verlag, 2007, X, 274 p. DOI 10.1007/978-3-540-45743-5.
12. Gas sensing fundamentals, Springer series on chemical sensors and biosensors, vol. 15, ed. by C.-D. Kohl, T. Wagner. Berlin, Heidelberg, Springer-Verlag, 2014, IX, 342 p. DOI: 10.1007/978-3-642-54519-1.