Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Features of the structural phase state of a film based on a high-entropy AlNbTiZrСu alloy synthesized by deposition of a multi-element metal plasma

Yu.F. Ivanov1, Yu.A. Abzaev2, A.A. Klopotov2, N.A. Prokopenko1, O.S. Tolkachev1, P.Yu. Nikitin4, V.V. Shugurov1, A.D. Teresov1, M.S. Petyukevich3

1 Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
2 Tomsk State University of Architecture and Building
3 National Research Tomsk Polytechnic University
4 National Research Tomsk State University

DOI: 10.26456/pcascnn/2021.13.693

Original article

Abstract: This paper presents the results of structural studies of films with a thickness of up to 5 microns of high-entropy alloys of the AlNbTiZrCu system. The films were synthesized on metal and cermet substrates by deposition of a multielement metal plasma created by electric arc plasma assisted simultaneous independent sputtering of several cathodes. It is shown that the films are a layered material and have an amorphous-crystalline structure. It was found that irradiation of films with a pulsed electron beam (18 keV, 20 J/cm2, 50 μs, 3 imp., 0,3 s-1) is accompanied by crystallization of the material. It is shown that the resulting films are dominated by the compound of the AlNbTiZr composition with the lattice parameter of 0,32344 nm. On the basis of theoretical calculations, the structural data of the crystal AlTi0,86Zr0,95Nb lattice were obtained, mechanical and thermodynamic characteristics of this compound were determined.

Keywords: high-entropy alloy, low-pressure gas discharge plasma, film/substrate system, pulsed electron beam, phase composition, structure

  • Yury F. Ivanov – Dr. Sc., Chief Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
  • Yury A. Abzaev – Dr. Sc., Professor, Department of Applied mechanics and materials science, Tomsk State University of Architecture and Building
  • Anatoly A. Klopotov – Dr. Sc., Professor, Department of Applied Mechanics and Materials Science, Tomsk State University of Architecture and Building
  • Nikita A. Prokopenko – Junior Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
  • Oleg S. Tolkachev – Junior Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
  • Pavel Yu. Nikitin – Junior Researcher, Laboratory of Nanotechnology Metallurgy, National Research Tomsk State University
  • Vladimir V. Shugurov – Junior Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics SB RAS
  • Anton D. Teresov – Researcher of the Laboratory of Beam-Plasma Surface Engineering, Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
  • Maria S. Petyukevich – Ph. D., Head of the Organizational Department of the Engineering School of New Production Technologies, National Research Tomsk Polytechnic University

Reference:

Ivanov, Yu.F. Features of the structural phase state of a film based on a high-entropy AlNbTiZrСu alloy synthesized by deposition of a multi-element metal plasma / Yu.F. Ivanov, Yu.A. Abzaev, A.A. Klopotov, N.A. Prokopenko, O.S. Tolkachev, P.Yu. Nikitin, V.V. Shugurov, A.D. Teresov, M.S. Petyukevich // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 693-707. DOI: 10.26456/pcascnn/2021.13.693. (In Russian).

Full article (in Russian): download PDF file

References:

1. Cantor B. Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 2004, vol. 375-377, рр. 213-218. DOI: 10.1016/j.msea.2003.10.257.
2. Yeh J.W., Chen S.-K., Lin S.-J.et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials, 2004, vol. 6, issue, рр. 299-303. DOI: 10.1002/adem.200300567.
3. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. High-entropy alloy: challenges and prospects, Materials Today, 2016, vol. 19, issue 6, рр. 349-362. DOI: 10.1016/j.mattod.2015.11.026.
4. Pogrebnjak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V.M. The structure and properties of high- entropy alloys and nitride coatings based on them, Russian Chemical Reviews, 2014, vol. 83, issue 11, рр. 1027- 1061. DOI: 10.1070/RCR4407.
5. Miracle, D.B., Senkov O.N. A critical review of high entropy alloys and related concepts, Acta Materialia, 2017, vol. 122, рр. 448-511. DOI: 10.1016/j.actamat.2016.08.081.
6. Otto F., Dlouhý A., Somsen Ch.et al. The influence of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 2013, vol. 61, issue 15, рр. 5743-5755. DOI: 10.1016/j.actamat.2013.06.018.
7. Pickering E.J., Jones N.G. High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews, 2016, vol. 61, issue 3, рр. 183-202. DOI: 10.1080/09506608.2016.1180020.
8. Nene S.S., Liu K., Frank M. et al. Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy, Scientific Reports, 2017, vol. 23, art. no. 16167, 7 p. DOI: 10.1038/s41598-017-16509-9.
9. Li Z., Körmann F., Grabowski B., Neugebauer J., Raabe D. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity, Acta Materialia, 2017, vol. 136, рр. 262-270. DOI: 10.1016/j.actamat.2017.07.023.
10. Basu S., Li Z., Pradeep K.G., Raabe D. Strain rate sensitivity of a trip-assisted dual-phase high-entropy alloy, Frontiers in Materials, 2018, vol. 5, art. no. 30, 10 p. DOI: 10.3389/fmats.2018.00030.
11. Li Z., Tasan C., Springer H., Gault B., Raabe D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Scientific Reports, 2017, vol. 12, art. no. 40704, 7 p. DOI: 10.1038/srep40704.
12. Klopotov А.А., Ivanov Yu.F., Teresov A.D., Marchenko E.S., Klopotov V.D. Obrazovanie MAX-faz elektronno-ionno-plazmennymi metodami [Formation of MAX-phases by electron-ion-plasma methods], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, рр. 236-245. DOI: 10.26456/pcascnn/2017.9.236. (In Russian).
13. Klopotov А.А., Ivanov Yu.F., Petrikova E.A. et al. Nasyshchenie poverkhnosti stali titanom i borom elektronno-ionno-plazmennym metodom: fazovo-strukturnyj sostav [Saturation of the steal surface by titanium and boron electron-ion-plasma method: phase-structural composition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, рр. 605-614. DOI: 10.26456/pcascnn/2019.11.605. (In Russian).
14. Ivanov Yu.F., Klopotov A.A., Petrikovai E.A. et al. Strukturno-fazovoe sostoyanie silumina zaevtekticheskogo sostava, obluchennogo impul'snym elektronnym puchkom [Structural-phase state of silumin of hypereutectic composition irradiated by a pulsed electron beam], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, рр. 89-102. DOI: 10.26456/pcascnn/2020.12.089. (In Russian).
15. Wang W.-R., Wang W.-L., Yeh J.-W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, Journal of Alloys and Compounds, 2014, vol. 589, рр. 143-152. DOI: 10.1016/j.jallcom.2013.11.084.
16. Rogal L, Szklarz Z., Bobrowski P. et al. Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy, Metals and Materials International, 2019, vol. 25, issue4, рр. 930-945. DOI: 10.1007/s12540-018-00236-5.
17. Crystallography open database. Available at: www.url: https://www.crystallography.net (accessed 01.06.2021).
18. Taylor R.H., Rose F., Toher C. et al. A RESTful API for exchanging materials data in the AFLOWLIB.org consortium, Computational Materials Science, 2014, vol. 93, рр. 178-192. DOI: 10.1016/j.commatsci.2014.05.014.
19. Calderon C.E., Plata J.J., Toher C. et al. The AFLOW Standard for High-Throughput Materials Science Calculations, Computational Materials Science, 2015, vol. 108, part A, рр. 233-238. doi: 10.1016/j.commatsci.2015.07.019.
20. Stanev V., Oses C., Kusne A.G. et al. Machine learning modeling of superconducting critical temperature, NPJ Computational Materials, 2018, vol. 4, art. no. 29, p. DOI: 10.1038/s41524-018-0085-8.
21. Gossett E., Toher C., Oses C. et al. AFLOW-ML: A RESTful API for machine-learning predictions of materials properties, Computational Materials Science, 2018, vol. 152, рр. 134-145. DOI: 10.1016/j.commatsci.2018.03.075.
22. Kosmachev P.V., Abzaev Yu.A., Vlasov V.A. Quantitative phase analysis of plasma-treated high-silica materials, Russian Physics Journal, 2018, vol. 61, issue 2, рр. 264-269. DOI: 10.1007/s11182-018-1396-4.
23. Oganov A.R., Glass C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, The Journal of Chemical Physics, 2006, vol. 124, issue 24, рр. 244704-1-244704-15. DOI: 10.1063/1.2210932.
24. Oganov A.R., Lyakhov A.O., Valle M. How evolutionary crystal structure prediction works and why, Accounts of Chemical Research, 2011, vol. 44, issue 3, рр. 227-237. DOI: 10.1021/ar1001318.
25. Lyakhov A.O., Oganov A.R., Stokes H.T., Zhu Q. New developments in evolutionary structure prediction algorithm USPEX, Computer Physics Communications, 2013, vol. 184, issue 4, рр. 1172-1182. DOI: 10.1016/j.cpc.2012.12.009.
26. Mazhnik E., Oganov A.R. Application of machine learning methods for predicting new superhard materials, Journal of Applied Physics, 2020, vol. 128, issue 7, рр. 075102-1-075102-14. DOI: 10.1063/5.0012055.
27. Mazhnik E., Oganov A.R. A model of hardness and fracture toughness of solids, Journal of Applied Physics, 2019, vol. 126, issue 12, рр. 125109-1-125109-11. DOI: 10.1063/1.5113622.
28. Isayev O., Oses C., Toher C. et al. Universal fragment descriptors for predicting electronic properties of inorganic crystals, Nature Communications, 2017, vol. 8, art. no. 15679, 12 p. DOI: 10.1038/ncomms15679.
29. Legrain F.J., Carrete J., van Roekeghem A., Curtarolo S., Mingo N. How chemical composition alone can predict vibrational free energies and entropies of solids, Chemistry of Materials, 2017, vol. 29, issue 15, рр. 6220-6227. DOI: 10.1021/acs.chemmater.7b00789.

⇐ Prevoius journal article | Content | Next journal article ⇒