Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Simulation of layer by layer growth of fractal metal Pt-Rh films

D.V. Ivanov1, V.A. Anofriev1, V.A. Koshelev1,2, A.S. Antonov1,3, S.A. Vasilyev1, N.Yu. Sdobnyakov1

1 Tver State University
2 ITMO University
3 Tver State Agricultural Academy

DOI: 10.26456/pcascnn/2021.13.682

Original article

Abstract: In this work, the molecular dynamics method and the tight-binding potential are used to simulate the process of molecular beam epitaxy in order to determine the regularities in the formation of fractal platinum metal films on the rhodium surface. The possibility of formation of fractal structures both in island platinum films on the rhodium surface and in a continuous film has been established. The parameters of the computer experiment, which determine the transition from individual island films to a continuous film in the indicated system, have been established. Using various software products Gwyddion and Image Analysis, as well as our own software FractalSurface, the range of changes in the fractal dimension has been analyzed under various conditions of a molecular dynamics experiment by the method of cube counting. The obtained values of the fractal dimension are generally in acceptable agreement with each other; however, there is a number of exceptions, which are discussed in more detail. A comparative analysis of the results obtained allows one to formulate recommendations for the methodology for creating, adjusting and precision control when «growing» structures with a given surface morphology.

Keywords: molecular beam epitaxy, molecular dynamics modeling, tight-binding potential, fractal dimension, cube counting, platinum, rhodium, imaging software

  • Dmitry V. Ivanov – postgraduate student, General Physics Department, Tver State University
  • Vitaly A. Anofriev – 1st year graduate student, General Physics Department, Tver State University
  • Vladimir A. Koshelev – Researcher, General Physics Department, Tver State University, 1st year graduate student, Faculty of Photonics ITMO University
  • Alexander S. Antonov – Ph. D., Researcher, Tver State University , Senior Lecturer Tver State Agricultural Academy
  • Sergey A. Vasilyev – Senior Lecturer, Applied Physics Department, Researcher, Management of Scientific Research, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University


Ivanov, D.V. Simulation of layer by layer growth of fractal metal Pt-Rh films / D.V. Ivanov, V.A. Anofriev, V.A. Koshelev, A.S. Antonov, S.A. Vasilyev, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 682-692. DOI: 10.26456/pcascnn/2021.13.682. (In Russian).

Full article (in Russian): download PDF file


1. Benelmekki M., Erbe A. Chapter 1 - Nanostructured thin films–background, preparation and relation to the technological revolution of the 21st century, Frontiers of Nanoscience, 2019, vol. 14, pp. 1-34. DOI: 10.1016/B978-0-08-102572-7.00001-5.
2. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver: Tver State Unibersity Publ., 2019, 168 p. (In Russian).
3. Xu C., De S., Balu A.M., Ojeda M., Luque R. Mechanochemical synthesis of advanced nanomaterials for catalytic applications, Chemical Communications, 2015, vol. 51, issue 31, pp. 6698-6713. DOI: 10.1039/C4CC09876E.
4. Roth N., Zuhlke C., Peng E. et al. Creation of micro/nano surface structures on silver using collinear double femtosecond laser pulses with different pulse separation, Multiscale and Multidisciplinary Modeling, Experiments and Design, 2018, vol. 1, issue 2, pp. 145-153. DOI: 10.1007/s41939-018-0011-2.
5. Shedd G.M., Russel P.E. The scanning tunneling microscope as a tool for nanofabrication, Nanotechnology, 1990, vol. 1, no. 1, pp. 67-80. DOI: 10.1088/0957-4484/1/1/012.
6. Sokolov D.N., Sdobnyakov N.Yu., Kutilin P.S. et al. O modelirovanii termicheskikh effektov pri vzaimodejstvii zonda skaniruyushchego tunnel'nogo mikroskopa s obraztsom [On the simulation of thermal effects in interaction between a probe tip of the scanning tunneling microscope and a sample], Nanotekhnika [Nanotechnology], 2013, no. 2 (34), pp. 78-80. (In Russian).
7. Goswami D.K., Satpati B., Satyam P.V., Dev B.N. Growth of self-assembled nanostructures by molecular beam epitaxy, Current Science, 2003, vol. 84, no. 7, pp. 903-910.
8. Ivanov D.V., Vasilyev S.A., Sdobnyakov N.Yu. et al. Modelirovanie protsessa formirovaniya fraktal'nykh metallicheskikh plenok [Simulation of the fractal metal films formation], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 424-437. DOI: 10.26456/pcascnn/2020.12.424. (In Russian).
9. Bembel A.G., Samsonov V.M., Pushkar M.Yu., Samsonov M.V. Komp'yuternoe modelirovanie rosta submikronnykh ostrovkovykh plenok s uchetom atomisticheskoj struktury tverdoj poverkhnosti [Computer simulation of the growth of submicron island films taking into account the atomistic structure of the solid surface], Vestnik TvGU, seriya «Fizika» [Herald of Tver State University, series «Physics»], 2009, issue 6, pp. 98-106. (In Russian).
10. DigitalSurf. Available at: www.url: (accessed 15.08.2021).
11. Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software. Available at: www.url: (accessed 15.09.2021).
12. Image Analysis P9. Rukovodstvo pol'zovatelya [Image Analysis P9. User guide]. Moscow: NT-MDT SI Publ., 2019, 582 p. (In Russian).
13. Sdobnyakov N.Yu., Anofriev V.A., Koshelev V.A., Antonov A.S., Ivanov D.V. FractalSurface: programma dlya analiza poverkhnosti na nanourovne [FractalSurface: software for surface analysis at nanoscale]. Certificate RF, no. 2021618928, 2021. (In Russian).
14. Sdobnyakov N.Yu., Zykov T.Yu., Bazulev A.N., Antonov A.S. Opredelenie fraktal'noi razmernosti ostrovkovykh plenok zolota na slyude [Determination of the fractal dimension of island films of gold on mica], Vestnik TvGU, seriya «Fizika» [Herald of Tver State University, series «Physics»], 2009, issue 6, pp. 112-119. (In Russian).
15. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy ], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 473-486. (In Russian).
16. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Poluchenie nanorazmernykh plenok platiny, obladayushchikh fraktal'nymi svojstvami [Obtaining nanosized platinum films with fractal properties], Fiziko- khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 73-88. DOI: 10.26456/pcascnn/2020.12.073. (In Russian).
17. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Determination of the fractal size of titanium films at different scales, Journal of Physics: Conference Series, 2021, vol. 1758, art. no. 012013, 6 p. DOI: 10.1088/1742-6596/1758/1/012013.
18. Gupta R.P. Lattice relaxation at a metal surface, Physical Review B, 1981, vol. 23, issue 12, pp. 6265-6270. DOI: 10.1103/PhysRevB.23.6265.
19. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
20. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
21. Belko A.V., Nikitin A.V., Strekal' N.D., German A.E. Fractal structure of gold clusters formed under vacuum deposition on dielectric substrates, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2009, vol. 3, issue 3, pp. 338-342. DOI: 10.1134/S1027451009030021.
22. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverkhnosti [Fractal geometric microsurface model], Geometriya i grafika [Geometry & Graphics], 2016, vol. 4, no. 1, pp. 4-11. DOI: 10.12737/18053. (In Russian).
23. Brylkin Yu.V., Kusov A.L., Florov A.V. Testirovanie algoritma modelirovaniya rel'efa sherokhovatoj poverkhnosti na osnove teorii fraktalov [Testing a rough surface relief modeling algorithm based on fractal theory], Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta [Proceedings of the Kabardino- Balkarian State University], 2014, vol. IV, no. 5, pp. 86-89. (In Russian).
24. Antonov A.S., Mikhailova O.V., Voronova E.A., Sdobnyakov N.Yu. O metodike podgotovki obraztsov dlya izucheniya fraktal'noj razmernosti i elektricheskikh svojstv obraztsov s pomoshch'yu skaniruyushchego tunnel'nogo mikroskopa [On the technique of preparing samples to study fractal dimension and electrical properties of samples using a scanning tunneling microscope], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2014, issue 6, pp. 15-21. (In Russian).
25. Samsonov V.M., Bembel A.G., Pushkar M.Yu. Komp'yuternaya programma dlya molekulyarno- dinamicheskogo modelirovaniya nanoklasterov [Computer program for molecular dynamics simulation of nanoclusters]. Certificate RF, no. 2013610101, 2013. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒