Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

New opportunities for high-performance simulations of nanosystem using Metropolis software

D.N. Sokolov, N.Yu. Sdobnyakov, K.G. Savina, A.Yu. Kolosov, V.S. Myasnichenko

Tver State University

DOI: 10.26456/pcascnn/2021.13.624

Original article

Abstract: The architecture and software Metropolis for computer simulation by the Monte Carlo method, as well as its modifications, are described. The tight-binding potential that does not exclude the possibility of using other modifications of many-body potentials. In comparison with previous software implementations of the Monte Carlo method, this modification has increased the rate of calculations by 700 times for a selected nanoparticle size. The data on the convergence of the results of modeling by the Monte Carlo method are presented on the example of the melting point. The developed software package is constantly tested for calculations of various mono- and multicomponent nanoparticles and nanosystems. The results obtained show fairly good agreement with other numerical methods, primarily molecular dynamics, and real experiment. Further development of the software package and its performance indicators are planned to be improved using parallelization of computations and the use of computing technology on graphics processors CUDA.

Keywords: computer experiment, Monte Carlo method, hybrid methods, nanoparticles, Metropolis API interface

  • Denis N. Sokolov – Ph. D., Researcher, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University
  • Ksenia G. Savina – 1st year graduate student, General Physics Department, Tver State University
  • Andrey Yu. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University


Sokolov, D.N. New opportunities for high-performance simulations of nanosystem using Metropolis software / D.N. Sokolov, N.Yu. Sdobnyakov, K.G. Savina, A.Yu. Kolosov, V.S. Myasnichenko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 624-638. DOI: 10.26456/pcascnn/2021.13.624. (In Russian).

Full article (in Russian): download PDF file


1. Myasnichenko V., Kirilov L., Mikhov R., Fidanova S., Sdobnyakov N. Simulated annealing method for metal nanoparticle structures optimization, Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, ed. by K. Georgiev, M. Todorov, I. Georgiev, 2019, vol. 793, pp. 277-289. DOI: 10.1007/978-3-319-97277-0_23.
2. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Monte Carlo approach for modeling and optimization of one-dimensional bimetallic nanostructures, Lecture Notes in Computer Science. Conference paper: International Conference on Numerical Methods and Applications, 20-24 August 2018, Borovets, Bulgaria, 2019, vol. 11189, pp. 133-141. DOI: 10.1007/978-3-030-10692-8_15.
3. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Structural instability of gold and bimetallic nanowires using Monte Carlo simulation, Recent Advances in Computational Optimization. Studies in Computational Intelligence, ed. by S. Fidanova. Cham, Springer, 2020, vol. 838, pp. 133-145. DOI: 10.1007/978-3-030-22723-4_9.
4. Myasnichenko V., Fidanova S., Mikhov R., Kirilov L., Sdobnyakov N. Representation of initial temperature as a function in simulated annealing approach for metal nanoparticle structures modeling, Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence, ed. by I. Dimov, S. Fidanova. Cham, Springer, 2021, vol. 902, pp. 61-72. DOI: 10.1007/978-3-030-55347-0_6.
5. Mikhov R., Myasnichenko V., Fidanova S., Kirilov L., Sdobnyakov N. Influence of the temperature on simulated annealing method for metal nanoparticle structures optimization, Advanced Computing in Industrial Mathematics. BGSIAM 2018, Studies in Computational Intelligence, ed. by In: I. Georgiev, H. Kostadinov, E. Lilkova. Cham, Springer, 2021, vol. 961, pp. 278-290. DOI: 10.1007/978-3-030-71616-5_25.
6. Hadjisavvas G.C., Kelires P.C. Advances in Monte Carlo simulations of nanostructured materials, Computer Simulation Studies in Condensed-Matter Physics XVIII: proceedings of the Eighteenth Workshop, Athens, GA, USA, March 7-11, 2005, ed. by D.P. Landau, S.P. Lewis, H.-B. Schüttler. Berlin, Heidelberg, Springer, 2007, vol. 105, pp. 58-70. DOI: 10.1007/978-3-540- 32640-3_8.
7. Viswanathan V., Wang F., Pitsch H. Monte Carlo-based approach for simulating nanostructured catalytic and electrocatalytic systems, Computing in Science & Engineering, 2012, vol. 14, issue 2, pp. 60-69. DOI: 10.1109/MCSE.2011.40.
8. Zhu R. Atomistic simulation of nanostructured materials. Doctoral dissertation. Akron, University of Akron, 2006, 130 p.
9. White R., Welland M.E. Kinetic Monte Carlo simulation of vapor-liquid-solid nanostructure growth, Journal of Applied Physics, 2007, vol. 102, issue 10, pp. 104301-1-104301-7. DOI: 10.1063/1.2805641.
10. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
11. Wang Y., Qin A., Chu L. et al. A nucleation and growth model of silicon nanoparticles produced by pulsed laser deposition via Monte Carlo simulation, Modern Physics Letters B, 2017, vol. 31, issue 4, pp. 1750021-1-1750021-7. DOI: 10.1142/S021798491750021X.
12. Chmielewski A., Nelayah J., Amara H. et al. Direct measurement of the surface energy of bimetallic nanoparticles: Evidence of Vegard’s rule-like dependence, Physical Review Letters, 2017, vol. 120, issue 2, pp. 025901-1-025901-6. DOI: 10.1103/Phys-RevLett.120.025901.
13. Arif I., Agrahari G., Gautam A.K., Chatterjee A. Inferring layer-by-layer composition in Au–Ag nanoparticles using a combination of X-ray photoelectron spectroscopy and Monte Carlo simulations, Surface Science, 2019, vol. 691, issue 18, art. no. 121503, 10 p. DOI: 10.1016/j.susc.2019.121503.
14 Gavilán Arriazu E.M., Giménez E.M., Pinto O.A. Structural surface and thermodynamics analysis of nanoparticles with defects, Physical Chemistry Chemical Physics, 2020, vol. 22, issue 40, pp. 23141-23147. DOI: 10.1039/D0CP03348K.
15. Metropolis N., Ulam S. The Monte Carlo method, Journal of the American Statistical Association, 1949, vol. 44, issue 247, pp. 335-341. DOI: 10.1080/01621459.1949.10483310.
16. Eom N., Messing M.E., Johansson J., Deppert K. General trends in core–shell preferences for bimetallic nanoparticles, ACS Nano, 2021, vol. 15, issue 5, pp. 8883-8895. DOI: 10.1021/acsnano.1c01500.
17. Li L., Li X., Duan Z. et al. Adaptive kinetic monte carlo simulations of surface segregation in PdAu nanoparticles, Nanoscale, 2019, vol. 11, issue 21, pp. 10524-10535. DOI: 10.1039/C9NR01858A.
18. Curk T., Luijten E. Charge regulation effects in nanoparticle self-assembly, Physical Review Letters, 2021, vol. 126, issue 13, pp. 138003-1-138003-6. DOI: 10.1103/PhysRevLett.126.138003.
19. Myshlyavcev A.V., Stishenko P.V. Modifikaciya algoritma Metropolisa dlya modelirovaniya metallicheskih nanochastic [Modification of the Metropolis algorithm for simulation metal nanoparticles], Omskij nauchnyj vestnik [Omsk Scietntific Bulletin], 2012, no. 1 (107), pp. 21-25. (In Russian).
20. Efendiev Y., Zachariah M.R. Hybrid Monte Carlo method for simulation of two-component aerosol coagulation and phase segregation, Journal of Colloid and Interface Science, 2002, vol. 249, issue 1, pp. 30-43. DOI: 10.1006/jcis.2001.8114.
21. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
22. Sdobnyakov N.Yu., Komarov P.V., Sokolov D.N., Samsonov V.M. Study of the thermodynamic characteristics of gold nanoclusters using a Gupta multiparticle potential, The Physics of Metals and Metallography, 2011, vol. 111, issue 1, pp. 13-20. DOI: 10.1134/S0031918X1101012.
23. Samsonov V.M., Sdobnyakov N.Yu., Bembel A.G. et al. Kompleksnyj podkhod k komp'yuternomu modelirovaniyu plavleniya i kristallizatsii nanoklasterov zolota [Complex approach to the computer simulation of the melting and crystallization of gold nanoclusters], Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta «MIFI», 2013, vol. 2, no. 4, pp. 448-451. DOI: 10.1134/S2304487X13040160. (In Russian).
24. Kumar P.V., Raut J.S., Warakomski S.J., Fichthorn K.A. Smart Monte Carlo for accurate simulation of rare-event dynamics: diffusion of adsorbed species on solid surfaces, The Journal of Chemical Physics, 1996, vol. 105, issue 2, pp. 686-695. DOI: 10.1063/1.471895.
25. Gupta R.P. Lattice relaxation at a metal surface, Physical Review B, 1981, vol. 23, issue 12, pp. 6265-6270. DOI: 10.1103/PhysRevB.23.6265.
26. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
27. Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, vol. 159, issue 1, pp. 98-103. DOI: 10.1103/PhysRev.159.98.
28. Nosé S. A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, 1984, vol. 81, issue 1, pp. 511-519. DOI: 10.1063/1.447334.
29. Sdobnyakov N.Yu., Samsonov V.M., Kolosov A.Yu. et al. To the problem of stability/instability of bimetallic structures Co (core)/ Au (shell) and Au (core)/ Co (shell): atomistic simulation, Fiziko- khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 520-534. DOI: 10.26456/pcascnn/2019.11.520. (In Russian).
30. Samsonov V.M., Sdobnyakov N.Yu., Myasnichenko V.S. et al. A Comparative analysis of the size dependence of the melting and crystallization temperatures in silver nanoparticles via the molecular dynamics and Monte-Carlo methods, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2018, vol. 12, issue 6, pp. 1206-1209. DOI: 10.1134/S1027451018050671.
31. Samsonov V.M., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Factors of the stability/instability of bimetallic core–shell nanostructures // Bulletin of the Russian Academy of Sciences: Physics. – 2021. – V. 85. – I. 9. – P. 950-954. DOI: 10.3103/S1062873821090240.

⇐ Prevoius journal article | Content | Next journal article ⇒