Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Influence of the size effect on the regularities of the structure formation in bimetallic Au-Co nanoparticles

N.Yu. Sdobnyakov, S.S. Bogdanov, A.D. Veselov, K.G. Savina, N.I. Nepsha, A.Yu. Kolosov, V.S. Myasnichenko

Tver State University

DOI: 10.26456/pcascnn/2021.13.612

Original article

Abstract: This work studied bimetallic Au–Co nanoparticles of three stoichiometric compositions of various sizes by the molecular dynamics method using the tight-binding potential. The regularities of structure formation are established, their characteristic features are described. In particular, in compositions with 50at% and 75at% Au content, multiple small nuclei of local icosahedral symmetry are formed. Crystalline phases prevail only in the Co -25 at% Au composition with an increase in the particle size. Compositions are revealed in which the internal symmetry of a nanoparticle is determined by the presence of one icosahedron or a superstructure of several icosahedrons. The concentration dependences of the mixing energy of a bimetallic Au–Co nanoparticle are calculated. It is shown that there are concentrations of compositions at which bimetallic nanoalloys can exhibit instability in a certain size range. Crystallization temperatures were determined using the caloric curves of the potential part of the internal energy. It was found that the crystallization temperature demonstrates a moderate or significant, depending on the composition as well as growth with an increase in the size of bimetallic Au–Co nanoparticles.

Keywords: molecular dynamics method, bimetallic nanoparticles, cobalt, gold, size mismatch, structure formation, stability, crystallization temperature, mixing energy

  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University
  • Sergei S. Bogdanov – 4th year postgraduate student, General Physics Department, Tver State University
  • Alexei D. Veselov – 3rd year postgraduate student, General Physics Department, Tver State University
  • Ksenia G. Savina – 1st year graduate student, General Physics Department, Tver State University
  • Nikita I. Nepsha – 1st year postgraduate student, General Physics Department, Tver State University
  • Andrey Yu. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University

Reference:

Sdobnyakov, N.Yu. Influence of the size effect on the regularities of the structure formation in bimetallic Au-Co nanoparticles / N.Yu. Sdobnyakov, S.S. Bogdanov, A.D. Veselov, K.G. Savina, N.I. Nepsha, A.Yu. Kolosov, V.S. Myasnichenko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 612-623. DOI: 10.26456/pcascnn/2021.13.612. (In Russian).

Full article (in Russian): download PDF file

References:

1. Sdobnyakov N.Yu., Samsonov V.M., Kolosov A.Yu. et al. To the problem of stability/instability of bimetallic structures Co (core)/ Au (shell) and Au (core)/ Co (shell): atomistic simulation, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 520-534. DOI: 10.26456/pcascnn/2019.11.520. (In Russian).
2. Bertier F., Tadjine A., Legrand B. Ageing of out-of-equilibrium nanoalloys by a kinetic mean-field approach, Physical Chemistry Chemical Physics, 2015, vol. 17, issue 42, pp. 28193-28199. DOI: 10.1039/C5CP00600G.
3. Nelli D., Ferrando R. Core–shell vs. multi-shell formation in nanoalloy evolution from disordered configurations, Nanoscale, 2019, vol. 11, issue 27, pp. 13040-13050. DOI: 10.1039/C9NR02963J.
4. Bhattaral N., Casillas G., Khanal S. et al. Structure and composition of Au/Co magneto- plasmonic nanoparticles, MRS Communications, 2013, vol. 3, issue 3, pp. 177-183. DOI: 10.1557/mrc.2013.30.
5. Train C., Nývlt M.N., Bartenlian B. et al. Spectroscopic PMOKE evidence of Au/Co segregation in a Au50Co50 cover layer deposited on Co(0001)/Au(111) with perpendicular anisotropy, Journal of Magnetism and Magnetic Materials, 1997, vol. 165, issue 1-3, pp. 417-420. DOI: 10.1016/S0304-8853(96)00574-4
6. Sato K., Matsushima Y., Konno T.J. Surface-segregation-induced phase separation in epitaxial Au/Co nanoparticles: formation and stability of core–shell structures, AIP Advances, 2017, vol. 7, issue 6, pp. 065309-1-065309-6. DOI: 10.1063/1.4986905.
7. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu., Vasilyev S.A. Surface segregation in binary Cu–Ni and Au–Co nanoalloys and the core–shell structure stability/instability: thermodynamic and atomistic simulations, Applied Nanoscience, 2019, vol. 9, issue 1, pp. 119-133. DOI: 10.1007/s13204-018-0895-5.
8. Palomares-Baez J.-P., Panizon E., Ferrando R. Nanoscale effects on phase separation, Nano Letters, 2017, vol. 17, issue 9, pp. 5394-5401. DOI: 10.1021/acs.nanolett.7b01994.
9. Zhao Z., Fisher A., Cheng D. Phase diagram and segregation of AgCo nanoalloys: insights from theory and simulation, Nanotechnology, 2016, vol. 27, no 11, art no. 115702, 11 p. DOI: 10.1088/0957-4484/27/11/115702.
10. Cui M., Lu H., Jiang H., Cao Z., Meng X. Phase diagram of continuous binary nanoalloys: size, shape, and segregation effects, Scientific Reports, 2017, vol. 7, art. no 41990, 10 p. DOI: 10.1038/srep41990.
11. Myasnichenko V.S., Ershov P.M., Savina K.G. et al. Regularities of structure formation in bimetallic nanoparticles with different crystallization temperatures, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 568-579. DOI: 10.26456/pcascnn/2021.13.568. (In Russian).
12. Myasnichenko V.S. Molecular dynamic modeling and bioinspired optimization of binary and ternary metal nanostructures (ClusterEvolution). Certificate RF, no. 2011615692, 2011. (In Russian).
13. Sdobnyakov N.Yu., Repchak S.V., Samsonov V.M. et al. Correlation between the size-dependent melting and crystallization temperatures of metal nanoparticles, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2011, vol. 5, issue 3, pp. 508-511. DOI: 10.1134/S1027451011050120.
14. Samsonov V.M., Sdobnyakov N.Yu., Myasnichenko V.S. et al. A Comparative analysis of the size dependence of the melting and crystallization temperatures in silver nanoparticles via the molecular dynamics and Monte-Carlo methods, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Technique, 2018, vol. 12, no. 6, pp. 1206-1209. DOI: 10.1134/S1027451018050671.
15. Samsonov V.M., Sdobnyakov N.Yu., Talyzin I.V. et al. Complex approach to atomistic simulation of the size dependences of the temperature and the heat of melting of Co nanoparticles: molecular dynamics and Monte Carlo method, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019, vol. 13, no. 6, pp. 1185-1188. DOI: 10.1134/S1027451019060478.
16. Cleri F., Rosato V. Tight binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
17. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
18. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1- 015012-7. DOI: 10.1088/0965-0393/18/1/015012.
19. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of thermodynamic and structural characteristics of metal nanoparticles in melting and crystallization processes: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
20. Dean J., Cowan M.J., Estes J., Ramadan M. Mpourmpakis G. Rapid prediction of bimetallic mixing behavior at the nanoscale, ACS Nano, 2020, vol. 14, issue 7, pp. 8171-8180. DOI: 10.1021/acsnano.0c01586.
21. Srinoi P., Chen Y.-T., Vittur V., Marquez M.D., Lee T.R. Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications, Applied Sciences, 2018, vol. 8, issue 7, art. no. 1106, 32 p. DOI: 10.3390/app8071106.
22. Myasnichenko V.S., Ershov P.M., Bogdanov S.S., Savina K.G., Matrenin P.S., Sdobnyakov N.Yu. Kristallizatsiya bimetallicheskikh nanochastits: vliyanie razmernogo nesootvetstviya atomov i vneshnego davleniya [Crystallization of bimetallic nanoparticles: effect of atomic size mismatch and external pressure], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 11, pp. 274-283. DOI: 10.26456/pcascnn/2020.12.274. (In Russian).
23. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H. et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no. 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
24. Yeremenko N.K., Dodonov V.G., Zakharov Yu.A., Obraztsova I.I., Yeremenko A.N. Sintez i morfologiya bimetallicheskikh nanochastits Co/Au so strukturoj yadro-obolochka [Synthesis and morphology of Co/Au bimetal nanoparticles with core-shell structure], Vestnik Kemerovskogo gosudarstvennogo universiteta [Bulletin of Kemerovo State University], 2014, vol. 3, no. 3, pp. 189-194. (In Russian).
25. Tiwari K., Devi M.M., Biswas K., Chattopadhyay K. Phase transformation behavior in nanoalloys, Progress in Materials Science, 2021, vol. 121, art. no. 100794, 77 p. DOI: 10.1016/j.pmatsci.2021.100794.
26. Eom N., Messing M.E., Johansson J., Deppert K. General trends in core−shell preferences for bimetallic nanoparticles, ACS Nano, 2021, vol. 15, issue 5, pp. 8883-8895. DOI: 10.1021/acsnano.1c01500.
27. Sdobnyakov N.Yu., Sokolov D.N., Bazulev A.N. et al. Relation between the size dependences of the melting and crystallization temperatures of metallic nanoparticles, Russian Metallurgy (Metally), 2013, no. 2, pp. 100-105. DOI: 10.1134%2FS0036029513020110.

⇐ Prevoius journal article | Content | Next journal article ⇒