Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Change in the structure of titanium nanoclusters under thermal exposure: molecular dynamic simulation

N.A. Pan'kin

National Research N.P. Ogarev Mordovia State University

DOI: 10.26456/pcascnn/2021.13.580

Original article

Abstract: Investigation of the structure of nanoclusters at different temperatures is an urgent task of modern materials science. This fact is due to the prospect of their application in the creation of materials with unique physical, mechanical, chemical and operational properties. Computer simulation was carried out by the method of classical molecular dynamics in the LAMMPS software package. To describe the interatomic interaction in the cluster, a modification of the Finnis-Sinclair many-body potential was used. The structure of titanium nanoclusters of various sizes has been studied. They are obtained at various cooling rates from the liquid state. An increase in the cooling rate leads to the formation of a subblock structure and an increase in the number of atoms with a disordered environment. They are due to the fact that high cooling rates impede the equilibrium process of rearrangement of the atomic structure with the formation of long-range order. No regions with an icosahedral structure were found. It is shown that the crystallization temperature and binding energy decrease with decreasing nanocluster size. An increase in the cooling rate increases the temperature difference between the start and end points of crystallization, respectively. The simulation results indicate a less pronounced dimensional dependence of the crystallization temperature – its estimated value for a macroscopic system (810K) is much lower than the value for bulk titanium (1940 K).

Keywords: nanocluster, binding energy, crystallization temperature, cooling rate, structure, molecular dynamics method

  • Nikolay A. Pan'kin – Ph. D., Docent, Department of Solid State Physics, National Research N.P. Ogarev Mordovia State University


Pan'kin, N.A. Change in the structure of titanium nanoclusters under thermal exposure: molecular dynamic simulation / N.A. Pan'kin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 580-592. DOI: 10.26456/pcascnn/2021.13.580. (In Russian).

Full article (in Russian): download PDF file


1. Smolanov N.A., Pan'kin N.A. Vliyaniye ionno-plazmennoy obrabotki na mekhanicheskiye svoystva izdeliy dlya proizvodstva kabelya [The influence of ion-plasma treatment on the mechanical properties of products for cable production], Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya fiziko- matematicheskie nauki [Bulletin of the Samara State Technical University. Series of physical and mathematical sciences.], 2004, issue 27, pp. 175-178. DOI: 10.14498/vsgtu299. (In Russian).
2. Eckstein W. Computer simulation of lon-solid interactions, Springer Series in Materials Science, vol. 10. Berlin, Heidelberg, Springer-Verlag, 1991, XI, 296 p. DOI: 10.1007/978-3-642-73513-4.
3. Matveev V.I., Kochkin S.A. Energy spectra and temperature distributions of clusters produced during ion- beam sputtering of metals, Technical Physics, 2004, vol. 49, issue 3, pp. 345-351. DOI: 10.1134/1.1688423.
4. Makarov G.N. Extreme processes in clusters impacting on a solid surface, Physics-Uspekhi, 2006, vol. 49, issue 2, pp. 117-166. DOI: 10.3367/UFNr.0176.200602a.0121.
5. Smirnov B.M. Processes involving clusters and small particles in a buffer gas, Physics-Uspekhi, 2011, vol. 54, issue 6, pp. 691-721. DOI: 10.3367/UFNr.0181.201107b.0713.
6. Liu S.-R., Zhai H.-J., Castro M., Wang L.-S. Photoelectron spectroscopy of Tin- clusters (n=1–130), Journal of Chemical Physics, 2003, vol. 118, issue 5, pp. 2108-2115. DOI: 10.1063/1.1531999.
7. Sakurai M., Watanabe K., Sumiyama K., Suzuki K. Magic numbers in transition metals (Fe, Ti, Zr, Nb and Ta ) clusters observed by time-flight mass spectrometry, Journal of Chemical Physics, 1999, vol. 111, issue 1, pp. 235-238. DOI: 10.1063/1.479268.
8. Pan'kin N.A. Structure of TiN (N=6–15) titanium cluster isomers, Journal of Experimental and Theoretical Physics, 2014, vol. 118, issue 6, pp. 856-862. DOI: 10.1134/S106377611405015X.
9. Mikhaĭlov E.A., Kosilov A.T. Atomic structure of Pdn( 4≤n≤15) nanoclusters, Physics of the Solid State, 2010, vol. 52, Issue. 2, pp. 426-430. DOI: 10.1134/S1063783410020332.
10. Heermann D. Computer Simulation Methods in Theoretical Physics, 2nd ed. Berlin, Heidelberg, Springer- Verlag, 1990, XII, 145 p. DOI: 10.1007/978-3-642-75448-7.
11. LAMMPS Molecular dynamics simulator. Available at: www.url: (accessed 15.08.2021).
12. Nosé S.A. Molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, vol. 52, issue 2, pp. 255-268. DOI: 10.1080/00268978400101201.
13. Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967. vol. 159, issue 1, pp. 98-103. DOI: 10.1103/PhysRev.159.98.
14. Mendelev M.I., Underwood T.L., Ackland G.J. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium, Journal of Chemical Physics, 2016, vol. 145, issue 15. pp. 154102-1-154102-11. DOI: 10.1063/1.4964654.
15. Mendelev M.I., Ackland G.J. Development of an interatomic potential for the simulation of phase transfomations in zirconium, Philosophical Magazine Letters, 2007, vol. 87, issue 5, pp. 349-359. DOI: 10.1080/09500830701191393.
16. Finnis M.W., Sinclair J.E. A simple empirical N-body potential for transition metals, Philosophical Magazine A, 1984, vol. 50, issue 1, pp. 45-55. DOI: 10.1080/01418618408244210.
17. Interatomic potentials repository. Available at: (accessed 05.09.2021). DOI: 10.18434/m37.
18. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1- 015012-7. DOI: 10.1088/0965-0393/18/1/015012.
19. Honeycutt J.D., Andersen H.C. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters, Journal of Chemical Physics, 1987, vol. 91, issue 19, pp. 4950-4963. DOI: 10.1021/j100303a014.
20. Qi Y., Çağin T., Johnson W.L., Goddard W.A. Melting and crystallization in Ni nano-clusters: the mesoscale regime, Journal of Chemical Physics, 2001, vol. 115, issue 1, pp. 385-394. DOI: 10.1063/1.1373664.
21. Samsonov V.M., Talyzin I.V., Samsonov M.V. On the effect of heating and cooling rates on the melting and crystallization of metal nanoclusters, Technical Physics, 2016, vol. 61, issue 6, pp. 946-949. DOI: 10.1134/S1063784216060207.
22. Gafner S.L., Redel L.V., Gafner Yu.Ya. Simulation of the processes of structuring of copper nanoclusters in terms of the tight-binding potential, Journal of Experimental and Theoretical Physics, 2009, vol. 108, issue 5, pp. 784-799. DOI: 10.1134/S1063776109050070.
23. Gafner Yu.Ya., Goloven'ko Zh.V., Gafner S.L. Formation of the structure of gold nanoclusters during crystallization Journal of Experimental and Theoretical Physics, 2013, vol. 116, issue 2, pp. 252-265. DOI: 10.1134/S106377611302009X.
24. Gafner S.L., Redel' L.V., Goloven'ko Zh.V. et al. Structural transitions in small nickel clusters, Journal of Experimental and Theoretical Physics Letters, 2009, vol. 89, issue7, pp. 364-369. DOI: 10.1134/S0021364009070121.
25. Sdobnyakov N.Yu., Sokolov D.N., Bazulev A.N. et al. Relation between the size dependences of the melting and crystallization temperatures of metallic nanoparticles, Russian Metallurgy (Metally), 2013, no. 2, pp. 100- 105. DOI: 10.1134/S0036029513020110.
26. Fizicheskie velichiny. Spravochnik [Physical quantities. Handbook], ed. by I.S. Grigor'eva, E.Z. Mejlikhova, Moscow, Energiya Publ., 1991, 1232 p. (In Russian).
27. Samsonov V.M., Sdobnyakov N.Yu., Talyzin I.V. et al. Complex approach to atomistic simulation of the size dependences of the temperature and the heat of melting of Co nanoparticles: molecular dynamics and Monte Carlo method, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019, vol. 13, no. 6, pp. 1185-1188. DOI: 10.1134/S1027451019060478.
28. Ershov P.M., Kolosov A.Yu., Myasnichenko V.S. et al. Issledovanie razmernykh zavisimostej temperatur plavleniya i kristallizatsii i udel'noj izbytochnoj poverkhnostnoj energii nanochastits nikelya vblizi fazovogo perekhoda plavlenie/kristallizatsiya [Investigation of size dependences of melting and crystallization temperatures and specific excess surface energy of nickel nanoparticles under melting/crystallization phase transition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 242-251.DOI: 10.26456/pcascnn/2018.10.242. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒