Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Analysis of Nb – Ni and V – Ni based membrane characteristics

R.M. Belyakova, E.D. Kurbanova, V.A. Polukhin

Institute of Metallurgy of the Ural Branch of the Russian Academy of Science

DOI: 10.26456/pcascnn/2021.13.552

Original article

Abstract: To obtain ultrapure hydrogen by membrane technology, instead of expensive membranes made of Pd alloys, cheaper ones based on metals ( Nb–Ni) and (V–Ni) are considered. Due to alloying of these Ti alloys, the performance of the membranes increased – diffusion and permeability of hydrogen, wear resistance and thermal stability, exceeding the Pd alloys. For crystalline analogs, the problem was also solved by increasing the Ti concentration with the formation of eutectic phases in ternary alloy compositions (Nb85-xTixNi15 and V85-xTixNi15). Hydrogen accumulated in membrane matrices forms specific polyhedral eutectic TСР hydrides up to phase transitions, and upon cooling from 673 to 303К under conditions of thermal expansion from 473 to 673К, it increases the temperature of β-hydride formation and forms NiTi and NiTi2 compounds, which stabilize and protect nano- and crystalline membranes from brittle destruction.

Keywords: Ti alloying, ternary alloys Nb–Ni–Ti, V–Ni–Ti, hydrogenation, absorption, diffusion, hydrogen permeability, phase formation, Me–H hydrides, embrittlement, duplex matrix microstructure

  • Rimma M. Belyakova – Ph.D., Senior Researcher, Institute of Metallurgy of the Ural Branch of the Russian Academy of Science
  • Elmira D. Kurbanova – Researcher, Institute of Metallurgy of the Ural Branch of the Russian Academy of Science
  • Valery A. Polukhin – Dr. Sc., Chief Researcher, Institute of Metallurgy of the Ural Branch of the Russian Academy of Science

Reference:

Belyakova, R.M. Analysis of Nb – Ni and V – Ni based membrane characteristics / R.M. Belyakova, E.D. Kurbanova, V.A. Polukhin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 552-561. DOI: 10.26456/pcascnn/2021.13.552. (In Russian).

Full article (in Russian): download PDF file

References:

1. Fontana A.D., Sirini N., Cornaglia L.M., Tarditi A.M. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO , CO2 and H2S , Journal of Membrane Science, 2018, vol. 563, pp. 351-359. DOI: 10.1016/j.memsci.2018.06.001.
2. Polukhin V.A., Sidorov N.I., Vatolin N.A. Presolidification changes in the structural–dynamic characteristics of glass-forming metallic melts during deep cooling, vitrification, and hydrogenation, Russian Metallurgy (Metally), 2019, vol. 2019, issue 8, p. 758-780. DOI: 10.1134/S0036029519080123.
3. Li X., Liang X., Liu D. et al. Design of (Nb,Mo)40Ti30Ni30 alloy membranes for combined enhancement of hydrogen permeability and embrittlement resistance, Scientific Reports, 2017, vol. 7, art. № 209, 11 p. DOI: 10.1038/s41598-017-00335-0.
4. Suzuki A., Yukawa H.A. A Review for consistent analysis of hydrogen permeability through dense metallic membranes, Membranes, 2020, vol. 10, issue 6, art. no. 120, 20 p. DOI: 10.3390/membranes10060120.
5. Sarker S., Isheim D., King G. et al. Icosahedra clustering and short range order in Ni–Nb–Zr amorphous membranes, Scientific Reports, 2018, vol. 8, art. no. 6084, 14 p. DOI: 10.1038/s41598-018-24433-9.
6. Li X., Liu D., Chen R. et al. Changes in microstructure, ductility and hydrogen permeability of Nb–(Ti,Hf)Ni alloy membranes by the substitution of Ti by Hf , Journal of Membrane Science, 2015, vol. 484, pp. 47-56. DOI: 10.1016/j.memsci.2015.03.002.
7. Yan E., Li X., Rettenmayr M. et al. Design of hydrogen permeable Nb–Ni–Ti alloys by correlating the microstructures, solidification paths and hydrogen permeability, International Journal of Hydrogen Energy, 2014, vol. 39, issue 7, pp. 3505-3516. DOI: 10.1016/j.ijhydene.2013.12.060.
8. Jiang P., Sun B., Wang H. et al. Effect of partial Ni substitution in V85Ni15 by Ti on microstructure, mechanical properties and hydrogen permeability of V– based bcc alloy membranes, Materials Research Express, 2020, vol. 7, art. no. 066505, 11 p. DOI: 10.1088/2053-1591/ab98ca.
9. Luo W., Ishikawa K., Aoki K. Hydrogen permeable Ta–Ti–Ni duplex phase alloys with high resistance to hydrogen embrittlement, Journal of Alloys and Compounds, 2008, vol. 460, issue 1-2, pp. 353-356. DOI: 10.1016/j.jallcom.2007.06.061.
10. Dai Y., Li J.H., Che X.L., Liu B.X. Glass-forming region of the Ni–Nb–Ta ternary metal system determined directly from n– body potential through molecular dynamics simulations, Journal of Materials Research, 2009, vol. 24, issue 5, pp. 1815-1819. DOI: 10.1557/jmr.2009.0198.
11. Mendelev M.I., Kramer M.J., Ott R.T., Sordelet D.J. Molecular dynamics simulation of diffusion in supercooled Cu–Zr alloys, Philosophical Magazine, 2009, vol. 89, issue 2, pp. 109-126. DOI: 10.1080/14786430802570648.
12. Polukhin V.A., Kurbanova E.D., Belyakova R.M. Hydrogenation of deeply cooled melts as an effective method for amorphization and control of the structure of alloys based on d – metals, Metal Science and Heat Treatment, 2021, vol. 63, issue 1-2, pp. 3-10. DOI: 10.1007%2Fs11041-021-00639-z.
13. Polukhin V.A., Vatolin N.A. Stability and thermal evolution of transition metal and silicon clusters, Russian Chemical Reviews, 2015, vol. 84, issue 5, pp. 498-539. DOI: 10.1070/RCR4411.
14. Suryanarayana C., Inoue A. Bulk metallic glasses, 2nd ed. Boca Raton, London, New York, CRC Press, 2017. 542 p. DOI: 10.1201/9781315153483.
15. Ding H.Y., Zhang W., Yamaura S.I., Yao K.F. Hydrogen permeable Nb–based amorphous alloys with high thermal stability materials transactions, Materials Transactions, 2013, vol. 54, issue 8, pp. 1330-1334. DOI: 10.2320/matertrans.MF201310.
16. Polukhin V.A., Vatolin N.A. Modelirovanie razuporyadochennykh i nanostrukturirovannykh faz [Simulation of disordered and nanostructured phases]. – Ekaterinburg, Ural Branch of RAS Publ., 2011. 462 p. (In Russian).
17. Palumbo O., Trequattrini F., Suchismita S., et al. New studies of the physical properties of metallic amorphous membranes for hydrogen purification, Challenges. Special Issue: Selected papers from Thematic Meeting «Materials for Energy», 2017, vol. 8, issue 1, art. no. 4, 12 p. DOI: doi.org/10.3390/challe8010004.
18. Belyakova R.M., Piven V.A., Sidorov N.I. et al. Vliyanie gidridov Ti–H na mezhatomnye vzaimodejstviya i kharakteristiki legirovannykh Ti membrannykh splavov na osnove V–Ni [Influence of Ti–H hydrides on interatomic interactions and on characteristics of Ti alloying membrane alloys based on V–Ni], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. P. 74-85. DOI: 10.26456/pcascnn/2019.11.074. (In Russian).
19. Chernyayeva T.P., Ostapov A.V. Vodorod v tsirkonii. Chast' 1 [Hydrogen in zirconium. Part 1], Voprosy atomnoj nauki i tekhniki [Problems of atomic science and technology], 2013, no. 5 (87), pp. – C. 16-32. (In Russian).
20. Luo W., Ishikawa K., Aoki K. Hydrogen permeability in Nb–Ti–Ni alloys containing much primary (Nb,Ti) phase, Materials Transactions, 2005, vol. 46, no. 10. – P. 2253-2259. DOI: 10.2320/matertrans.46.2253.
21. Baraban A., Gabis I., Kozhakhmetov S., et al. Structure and hydrogen permeability of V–15Ni alloy, International Journal of Hydrogen Energy, 2019, vol. 44, issue 50, pp. 27492-27498. DOI: 10.1016/j.ijhydene.2019.08.224.
22. Veleckis E., Edwards R.K. Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen, The Journal of Physical Chemistry, 1969, vol. 73, no. 3, pp. 683-692. DOI: 10.1021/j100723a033.
23. Voyt A., Sidorov N., Sipatov I. et al. Hydrogen solubility in V85Ni15 alloy, International Journal of Hydrogen Energy, 2016, vol. 42, issue 5, pp. 3058-3061. DOI: 10.1016/j.ijhydene.2016.10.033.
24. Sipatov I.S., Sidorov N.I., Pastukhov E.A. et al. Hydrogen permeability and structure of vanadium alloy membranes, Petroleum Chemistry, 2017, vol. 57, issue 6, pp. 483-488. DOI: 10.1134/S096554411706010X.
25. Pastukhov E.A., Sidorov N.I., Polukhin V.A., Chentsov V.P. Short order and transport in amorphous palladium materials, Defect and Diffusion Forum, 2009, vol. 283-286, pp. 149-154. DOI: 10.4028/www.scientific.net/DDF.283-286.149.
26. Galashev A.E., Polukhin V.A. Computer-assisted study of silver absorption by porous silicon dioxide nanoparticles, Colloid Journal, 2011, vol. 73, issue 6, pp. 761-767. DOI: 10.1134/S1061933X11050036.
27. Vatolin N.A., Polukhin V.A., Belyakova R.M., Pastukhov E.A. Simulation of the influence of hydrogen on the structural properties of amorphous iron, Materials Science and Engineering, 1988, vol. 99, issue 1-2, pp. 551-554. DOI: 10.1016/0025-5416(88)90396-5.

⇐ Prevoius journal article | Content | Next journal article ⇒