Simulation of polymorphic varieties of hexagonal graphene functionalized by hydroxyl groups
M.E. Belenkov, V.M. Chernov
Chelyabinsk State University
DOI: 10.26456/pcascnn/2021.13.541
Original article
Abstract: Computer simulation of the crystal and electronic structure of hexagonal graphene layers, on the surface of which hydroxyl groups, chemically adsorbed, was performed by the density functional theory method. As a result of calculations, the possibility of the stable existence of five structural varieties of COH–L6 layers was established. The layer density varies from 1,62 to 1,72 mg/m2. The length of the hydrogen-oxygen bond varies in the range from 1,046 to 1,079 Å, and the carbon-oxygen bond-from 1,455 to 1,465 Å. The orientation of the O–H bonds relative to the surface of the layers can vary depending on the choice of the unit cell of the layer. Layer COH–L6–T4 has the minimum sublimation energy equal to 18,69 eV/(COH), and layer COH–L6–T1 has the maximum sublimation energy 18,93 eV/(COH). The electronic structure of all COH layers is characterized by the presence of a direct band gap at the Fermi energy level, varying in the range from 3,02 to 4,56 eV.
Keywords: graphene, chemical adsorption, hydroxyl groups, ab initio calculations, crystal structure, electronic properties, polymorphism
- Maxim E. Belenkov – 3rd year postgraduate student, Radiophysics and Electronics Department, Physical Faculty, Chelyabinsk State University
- Vladimir M. Chernov – Dr. Sc., Full Professor, Radiophysics and Electronics Department, Physical Faculty, Chelyabinsk State University
Reference:
Belenkov, M.E. Simulation of polymorphic varieties of hexagonal graphene functionalized by hydroxyl groups / M.E. Belenkov, V.M. Chernov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 541-551. DOI: 10.26456/pcascnn/2021.13.541. (In Russian).
Full article (in Russian): download PDF file
References:
1. Kawai S., Saito S., Osumi S. et al.Atomically controlled substitutional boron-doping of graphene nanoribbons, Nature Communications, 2015, vol. 6, art. no. 8098, 6 p. DOI: 10.1038/ncomms9098.
2. Lu G., Yu K., Wena Z. Semiconducting graphene: converting graphene from semimetal to semiconductor, Nanoscale, 2013, vol. 5, issue 4, pp. 1353-1368. DOI: 10.1039/C2NR32453A.
3. Bistritzer R., MacDonald A.H. Moiré dands in twisted double-layer graphene, PNAS, 2011, vol. 108, issue 30, pp. 12233-12237. DOI: 10.1073/pnas.1108174108.
4. Brzhezinskaya M., Kononenko O., Matveev V. et al. Engineering of numerous Moiré superlattices in twisted multilayer graphene for twistronics and straintronics applications, ACS Nano, 2021, vol. 15, issue 7, pp. 12358- 12366. DOI: 10.1021/acsnano.1c04286.
5. Belenkov M.E., Kochengin A.E., Chernov V.M., Belenkov E.A. Graphene polymorphs, IOP Journal of Physics: Conference Series, 2019, vol. 1399, issue 2, art. no. 022024, 5 p. DOI: 10.1088/1742- 6596/1399/2/022024.
6. Stergiou A., Cantón-Vitoria R., Psarrou M.N., Economopoulos S.P., Tagmatarchis N. Functionalized graphene and targeted applications – Highlighting the road from chemistry to applications, Progress in Materials Science, 2020, vol. 114, art. no. 100683, 71 p. DOI: 10.1016/j.pmatsci.2020.100683.
7. Duan Y., Stinespring C.D., Chorpening B. Electronic structures, bonding configurations, and band-gap-opening properties of graphene binding with low-concentration fluorine, Chemistry Open, 2015, vol. 4, issue 5, pp. 642-650. DOI: 10.1002/open.201500074.
8. Belenkov M.E., Chernov V.M. Dependence of the electronic and crystal structure of a functionalized graphene on the concentration of chemically adsorbed fluorine, Nanosystems: physics, chemistry, mathematics, 2020, vol. 11, issue 6, pp. 685-689. DOI: 10.17586/2220-8054-2020-11-6-685-689.
9. Savin A.V. stationary states of single-side hydrogenated graphene sheets disposed on planar substrates, Physics of the Solid State, 2020, vol. 62, issue 3, pp. 574-579. DOI: 10.1134/S1063783420030208.
10. Belenkov E.A., Shabiev F.K. Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis, Letters on Materials, 2015, vol. 5, no. 4, pp. 459-462. DOI: 10.22226/2410-3535-2015-4-459-462.
11. Elias D.C., Nair R.R., Mohiuddin T.M. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphene, Science, 2009, vol. 323, issue 5914, pp. 610-613. DOI: 10.1126/science.1167130.
12. Nair R.R., Ren W., Jalil R. et al. Fluorographene: a two-dimensional counterpart of teflon, Small, 2010, vol. 6, issue 24, pp. 2877-2884. DOI: 10.1002/smll.201001555.
13. Chen D., Feng H., Li J. Graphene oxide: preparation, functionalization, and electrochemical applications, Chemical Reviews, 2012, vol. 112, issue 11, pp. 6027-6053. DOI: 10.1021/cr300115g.
14. Li B., Zhou L., Wu D. et al. Photochemical chlorination of graphene, ACS Nano, 2011, vol. 5, issue 7, pp. 5957-5961. DOI: 10.1021/nn201731t.
15. Rabchinskii M.K., Saveliev S.D., Stolyarova D.Yu., Brzhezinskaya M. et al. Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination, Carbon, 2021, vol. 182, pp. 593-604. DOI: 10.1016/j.carbon.2021.06.057.
16. Lee D., Seo J. Three-dimensionally networked graphene hydroxide with giant pores and its application in supercapacitors, Scientific Reports, 2014, vol. 4, art. no. 7419, 6 p. DOI: 10.1038/srep07419.
17. Wen X.D., Hand L., Labet V. et al. Graphane sheets and crystals under pressure, PNAS, 2011, vol. 108, issue 17, pp. 6833-6837. DOI: 10.1073/pnas.1103145108.
18. Belenkova T.E., Chernov V.M., Belenkov E.A. Structural variations of graphаne, RENSIT, 2016, vol. 8, no. 1. pp. 49-54. DOI: 10.17725/rensit.2016.08.049.
19. Belenkov M.E., Chernov V.M., Belenkov E.A. Struktura i elektronnye svojstva polimorfnykh raznovidnostej ftorografena [Structure and electronic properties of polymorphic types of fluorographene], Chelyabinskij fiziko- matematicheskij zhurnal [Chelyabinsk Physical and Mathematical Journal], 2018, vol. 3, issue 2, pp. 202-211 DOI: 10.24411/2500-0101-2018-13206. (In Russian).
20. Belenkov M.E., Chernov V.M., Belenkov E.A. Structure of fluorographene and its polymorphous varieties, IOP Journal of Physics: Conference Series, 2018, vol. 1124, issue. 2, art. no. 022010, 6 p. DOI: 10.1088/1742-6596/1124/2/022010.
21. Koch W., Holthausen M.C. A chemist’s guide to density functional theory, 2nd ed. Weinheim – New York – Chichester – Brisbane – Singapore – Totonto, Wiley-VCH Verlag GmbH, 2001, 313 p. DOI: 10.1002/3527600043.
22. Langreth D.C., Mehl M.J. Beyond the local-density approximation in calculations of ground-state electronic properties, Physical Review B, 1983, vol. 28, issue 4, pp. 1809-1834. DOI: 10.1103/PhysRevB.28.1809.
23. Giannozzi P., Baroni S., Bonini N. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 2009, vol. 21, no. 39, pp. 395502-1-395502-19. DOI: 10.1088/0953-8984/21/39/395502.