Calculation of electronic structure of 2D NaAu intermetallic layers
Yu.A. Kuznetsov, M.N. Lapushkin
Ioffe Institute
DOI: 10.26456/pcascnn/2021.13.475
Original article
Abstract: The calculation of the density of states of various thicknesses of the 2D -layers of the intermetallic compound has been carried out. 2D -layers of intermetallic compound NaAu are simulated by supercells NaAu (111) 2×2×2. For a monolayer 2D -layer of an intermetallic compound NaAu the presence of a bandgap with a width of 1,87 eV has been established. An increase in the thickness of the 2D -layers of the intermetallic compound NaAu to two monolayers showed a decrease in the bandgap to 0,81 eV. A further increase in the thickness of the 2D -layers of the intermetallic compound NaAu leads to the disappearance of the band gap, which indicates a semiconductor-metal transition for the 2D -layer of the intermetallic compound NaAu with a thickness of three monolayers. The valence band of the 2D -layer of the intermetallic compound NaAu is formed mainly by Au 5d electrons, with an insignificant contribution from Au 6s and Au 6p electrons. The conduction band of NaAu is formed mainly by Au 6p electrons with an insignificant contribution of electrons Na 3s .
Keywords: electronic structure, intermetallic compounds, 2D -layer, sodium auride
- Yurij A. Kuznetsov – Researcher, Ioffe Institute
- Mikhail N. Lapushkin – Ph. D., Docent, Senior Researcher, Ioffe Institute
Reference:
Kuznetsov, Yu.A. Calculation of electronic structure of 2D NaAu intermetallic layers / Yu.A. Kuznetsov, M.N. Lapushkin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 475-482. DOI: 10.26456/pcascnn/2021.13.475. (In Russian).
Full article (in Russian): download PDF file
References:
1. Spicer W.E. Photoemission and band structure of the semiconducting compound CsAu , Physical Review, 1962, vol. 125, issue 4, pp. 1297-1299. DOI: 10.1103/PhysRev.125.1297.
2. Jansen M. The chemistry of gold as an anion, Chemical Society Reviews, 2008, vol. 37, issue 9, pp. 1826- 1835. DOI: 10.1039/b708844m.
3. Priecel P., Adekunle Salami H., Romen S. et al. Anisotropic gold nanoparticles: Preparation and applications in catalysis, Chinese Journal of Catalysis, 2016, vol. 37, issue 10, pp. 1619-1650. DOI: 10.1016/S1872- 2067(16)62475-0.
4. Jamkhande P.G., Ghule N.W., Bamer A.H., Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, Journal of Drug Delivery Science and Technology, 2019, vol. 53, art. no. 101174, 11 p. DOI: 10.1016/j.jddst.2019.101174.
5. Korotcenkov G., Brinzari V., Cho B.K. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review, Microchimica Acta, 2016, vol. 183, issue 3, pp. 1033-1054. DOI: 10.1007/s00604-015-1741-z.
6. Ageev V.N., Kuznetsov Yu.A. Electron-stimulated desorption of sodium atoms from sodium layers adsorbed on a gold film, Physics of the Solid State, 2008, vol. 50, issue 2, pp. 379-382. DOI: 10.1134/S1063783408020261.
7. Kuznetsov Yu.A., Lapushkin M.N. Elektronno-stimulirovannaya desorbtsiya atomov kaliya, adsorbirovannykh na poverkhnosti zolota [Electron-stimulated desorption of potassium atoms adsorbed on the surface of gold], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 836-844. DOI: 10.26456/pcascnn/2020.12.836. (In Russian).
8. Kuznetsov Yu.A., Lapushkin M.N. Elektronno-stimulirovannaya desorbtsiya atomov tseziya, adsorbirovannykh na poverkhnosti zolota [Electron-stimulated desorption of potassium atoms adsorbed on the surface of gold], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2015, issue 7, pp. 333-340. (In Russian).
9. Grosch G.H., Range K.-J. Chemical trends in gold alkali alloys: A density functional theory study on stability and charge transfer Part I: Gold alkali alloys of the formula MAu , Journal of Alloys and Compounds, 1996, vol. 233, issue 1-2, pp. 30-38. DOI: 10.1016/0925-8388(96)80030-2.
10. Sarmiento-Perez R., Cerqueira T.F.T., Valencia-Jaime I., et al. Sodium-gold binaries: novel structures for ionic compounds from an ab initio structural search, New Journal of Physics, 2013, vol. 15, art. no 115007, 9 p. DOI: 10.1088/1367-2630/15/11/115007.
11. Grosch G.H., Range K.-J. Chemical trends in gold alkali alloys – a DFT-study on stability and charge transfer Part II: Gold alkali alloys of the formula MAu5, Journal of Alloys and Compounds, 1996, vol. 233, issue 1-2, pp. 39-43. DOI: 10.1016/0925-8388(96)80031-4.
12. Giannozz, P., Baroni S., Bonini N. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 2009, vol. 21, no. 39, art. no. 395502, 19 p. DOI: 10.1088/0953- 8984/21/39/395502.
13. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple, Physical Review Letters, 1996, vol. 77, issue 18, pp. 3865-3868. DOI: 10.1103/physrevlett.77.3865.
14. Troullier N., Martins J.L. Efficient pseudopotentials for plane-wave calculations, Physical Review B, 1991, vol. 43, issue 3, pp. 1993-2006. DOI: 10.1103/physrevb.43.1993.
15. Nishihara S. BURAI 1.3 A GUI of Quantum ESPRESSO. Available at: https://nisihara.wixsite.com/burai (accessed 16.08.2021).
16. Koenig C., Christensen N.E., Kollar J. Electronic properties of alkali-metal – gold compounds, Physical Review B, 1984, vol. 29, issue 12, pp. 6481-6488. DOI: 10.1103/PhysRevB.29.6481.
17. Watson R.E., Weinert M. Charge transfer in gold–alkali-metal systems, Physical Review B, 1994, vol. 49, issue 11, pp. 7148-7154. DOI: 10.1103/PhysRevB.49.7148.