Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Comparative analysis of the influence of doping ions of yttrium and boron formation of defects in lithium niobate crystals

O.S. Starodub, V.M. Voskresenskij, N.V. Sidorov, M.N. Palatnikov

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

DOI: 10.26456/pcascnn/2021.13.411

Original article

Abstract: Lithium niobate crystals, which are a widely used and highly demanded as nonlinear optical material, are remarkable for their ability to vary a wide range of ferroelectric and nonlinear optical characteristics depending on the type and concentration of the impurity ion, as well as on the Li/Nb ratio. Based on our approach to modeling clusters in the lithium niobate crystal, in which the cluster grows not by unit cells, but by oxygen octahedra, we have carried out a comparative analysis of the features of the incorporation of impurity ions of yttrium and boron with the same charge +3 into the crystal. It is shown that due to the different ionic radii the incorporation proceeds by to two mechanisms. If for yttrium the usual mechanism operates, when the impurity ion is localized inside the oxygen octahedron. The ion of boron, i.e. a nonmetallic element, is incorporated into the tetrahedral voids of the structure, namely, into the oxygen planes forming the octahedron. In this case, the influence of these impurity ions on one of the most important characteristics of lithium niobate turns out to be diametrically opposite: yttrium enhances the photorefractive effect, boron decreases it, which must be taken into account in the direction of targeted use of lithium niobate crystals.

Keywords: lithium niobate, modeling, clusters, vacancy models, sublattice defects, single crystals, ferroelectrics

  • Olga S. Starodub – Ph. D., Senior Researcher, Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Vyacheslav M. Voskresenskij – Junior Researcher, Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Nikolay V. Sidorov – Dr. Sc., Professor, Acting as Chief Researcher and as Head of Sector of Vibrational Spectroscopy of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Mikhail N. Palatnikov – Dr. Sc., Acting as Chief Researcher and as Head of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Reference:

Starodub, O.S. Comparative analysis of the influence of doping ions of yttrium and boron formation of defects in lithium niobate crystals / O.S. Starodub, V.M. Voskresenskij, N.V. Sidorov, M.N. Palatnikov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 411-420. DOI: 10.26456/pcascnn/2021.13.411. (In Russian).

Full article (in Russian): download PDF file

References:

1. Kuz'minov Yu.S. Elektroopticheskij i nelinejnoopticheskij kristall niobata litiya [Electro-optical and nonlinear- optical crystal of lithium niobate]. Moscow, Nauka Publ., 1987, 264 p. (In Russian).
2. Volk T., Wohlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching. Berlin, Springer, 2008, 250 p. DOI: 10.1007/978-3-540-70766-0.
3. Sidorov N.V., Teplyakova N.A., Palatnikov M.N. Issledovanie fotorefraktivnykh svojstv kristallov niobata litiya metodami kombinatsionnogo i fotoindutsirovannogo rasseyaniya sveta [Investigation of the photorefractive properties of lithium niobate crystals by the methods of Raman and photoinduced light scattering], Fiziko- khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 442-448. DOI: 10.26456/pcascnn/2017.9.442. (In Russian).
4. Fontana M.D., Bourson P. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices, Applied Physics Reviews, 2015, vol. 2, issue 4, pp. 040602-1-040602-14. DOI: 10.1063/1.4934203.
5. Schröder M., Haußmann A., Thiessen A. et al. Conducting domain walls in lithium niobate single crystals, Advanced Functional Materials, 2012, vol. 22, issue 18, pp. 3936-3944. DOI: 10.1002/adfm.201201174.
6. Burachas S.F., Vasil’ev A.A., Ippolitov M.S. et al. Influence of cluster defects of variable composition on the optical and radiative characteristics of oxide crystals, Crystallography Reports, 2007, vol. 52, issue 6, pp. 1088- 1093. DOI: 10.1134/S1063774507060259.
7. Kokhanchik L.S., Gainutdinov R.V., Mishina E.D., Lavrov S.D., Volk T.R. Characterization of electron-beam recorded microdomain patterns on the nonpolar surface of LiNbO3 crystal by nondestructive methods, Applied Physics Letters, 2014, vol. 105, issue 14, pp. 142901-1-142901-4. DOI: 10.1063/1.4897279.
8. Donnerberg H., Tomlinson S.M., Catlow C.R.A., Schirmer O.F. Computer-simulation studies of intrinsic defects in LiNbO3 crystals, Physical Review B, 1989, vol. 40, issue 17, pp. 11909-11916. DOI: 10.1103/physrevb.40.11909.
9. Zotov N., Boysen H., Frey F. et al. Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction, Journal of Physics and Chemistry of Solids, 1994, vol. 55, issue 2, pp. 145-152. DOI: 10.1016/0022-3697(94)90071-X.
10. Voskresenskii V.M., Starodub O.R., Sidorov N.V., et al. Modeling of cluster formation in nonlinear optical lithium niobate crystal, Crystallography Reports, 2011, vol. 56, issue 2, pp. 221-226. DOI: 10.1134/S1063774511010251.
11. Starodub O.R., Voskresenskiy V.M., Sidorov N.V., Palatnikov M.N. Analiz klasteroobrazovaniya v modeliruemykh kristallakh niobata litiya [Analysis of cluster formation in modeled lithium niobate crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 232-240. DOI: 10.26456/pcascnn/2019.11.232. (In Russian).
12. Starodub O.R., Voskresenskiy V.M., Sidorov N.V., Palatnikov M.N. Vliyanie legiruyushchego iona na protsessy defektoobrazovaniya v modeliruemykh klasterakh niobata litiya [Influence of a doping ion on the processes of defect formation in simulated lithium niobate clusters], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 180-189. DOI: 10.26456/pcascnn/2020.12.180. (In Russian).
13. Fedorova E.P., Aleshina L.A., Sidorov N.V. et al. Stoichiometry and doping effects on cation ordering in LiNbO3 crystals, Inorganic Materials, 2010, vol. 46, issue 2, pp. 206-211. DOI: 10.1134/S0020168510020214.
14. Sidorov, N.V., Pikoul O.Yu., Kruk A.A. et al. Complex investigations of structural and optical homogeneities of low-photorefractivity lithium niobate crystals by the conoscopy and photoinduced and Raman light scattering methods, Optics and Spectroscopy, 2015, vol. 118, issue 2, pp. 259-238. DOI: 10.1134/S0030400X15020174.
15. Titov R.A., Voskresenskiy V.M., Sidorov N.V., Teplyakova N.A., Palatnikov M.N. Structural features and optical properties of nominally pure LiNbO3 crystals grown from a charge containing B2O3 , Technical Physics, 2021, vol. 66, issue, pp. 59-66. DOI: 10.1134/S1063784221010217.
16. Sidorov N.V., Teplyakova N.A., Titov R.A., Palatnikov M.N. Photovoltaic fields and the secondary structure of nominally pure lithium niobate crystals grown from a boron-doped furnace charge, Technical Physics, 2020, vol. 65, issue 4, pp. 627-634. DOI: 10.1134/S1063784220040192.

⇐ Prevoius journal article | Content | Next journal article ⇒