Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Structure changing of submicron PZT films with a fine variation of the composition corresponding to morphotropic phase boundary

M.V. Staritsyn1, M.L. Fedoseev1, E.Yu. Kaptelov2, S.V. Senkevich2, I.P. Pronin2

1 NRC «Kurchatov Institute»– CRISM «Prometey»
2 Ioffe Institute

DOI: 10.26456/pcascnn/2021.13.400

Original article

Abstract: The paper discusses the possibility of a fine variation in the composition of submicron ferroelectric films of lead zirconate titanate solid solutions corresponding to a morphotropic phase boundary. Composition was varied by changing the distance from the target to the substrate in the range of 30–70 mm in an installation for radio-frequency magnetron sputtering of a ceramic target, in which films deposition occurred on a «cold» platinized silicon substrate. This made it possible to change the composition of the deposited films (i.e., the elemental ratio of Zr and Ti atoms) in the range of 0–1,5 % while maintaining the single-phase perovskite films annealed at 580 °С. In this case, the films were characterized by elemental inhomogeneity of the composition over the thickness, reaching several percents. The thickness of thin lead zirconate titanate layers was 500 nm. Changes in the microstructure and crystal lattice parameters were studied. The change in the composition of the films was accompanied by significant changes in the nature of the spherulite microstructure and growth texture. A sharp jump in the quasi-cubic crystal lattice parameter was discovered, which may be caused by the phase transformation of the ferroelectric phase – from the rhombohedral modification to the two-phase state, presumably consisting of monoclinic and tetragonal modifications.

Keywords: lead zirconate titanate solid solutions, thin films, morphotropic phase boundary, fine variation in composition, microstructure

  • Mikhail V. Staritsyn – Engineer, NRC «Kurchatov Institute»– CRISM «Prometey»
  • Mikhail L. Fedoseev – Engineer, NRC «Kurchatov Institute»– CRISM «Prometey»
  • Evgeny Yu. Kaptelov – Ph. D., Senior Researcher, Ioffe Institute
  • Stanislav V. Senkevich – Ph. D., Researcher, Ioffe Institute
  • Igor P. Pronin – Dr. Sc., Senior Researcher, Ioffe Institute

Reference:

Staritsyn, M.V. Structure changing of submicron PZT films with a fine variation of the composition corresponding to morphotropic phase boundary / M.V. Staritsyn, M.L. Fedoseev, E.Yu. Kaptelov, S.V. Senkevich, I.P. Pronin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 400-410. DOI: 10.26456/pcascnn/2021.13.400. (In Russian).

Full article (in Russian): download PDF file

References:

1. Shirane G., Suzuki K., Takeda A. Phase transitions in solid solutions of PbZrO3 and PbZrO3 (II). X-ray study. X-ray study, Journal of Physical Society of Japan, 1952, vol. 7, no. 1, pp. 12-18. DOI: 10.1143/JPSJ.7.12.
2. Shirane G., Suzuki K. Crystal structure of Pb(Zr–Ti)O3, Journal of Physical Society of Japan, 1952, vol. 7, no. 3, pp. 333. DOI: 10.1143/JPSJ.7.333
3. Jaffe B., Cook W.R., Jaffe H. Piezoelectric Ceramics. London, New York, Academic Press, 1971, 328 p.
4. Xu Y. Ferroelectric materials and their applications. North Holland, Amsterdam, London, New York, Tokyo, Elsevier Science Publishers, 1991, XIV, 391 p.
5. Noheda B., Cox, D. E., Shirane G. et al. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution, Applied Physics Letters, 1999, vol. 74, issue 14, pp. 2059-2061. DOI: 10.1063/1.123756
6. Cox D.E., Noheda B., Shirane G. Low-temperature phases in PbZr0,52Ti0,48O3 : A neutron powder diffraction study, Physical Review B, 2005, vol. 71, issue 13, art. no. 134110-1-134110-10. DOI: 10.1103/PhysRevB.71.134110.
7. Scott J.F., Paz de Araujo C.A. Ferroelectric memories, Science, 1989, vol. 246, issue 4936, pp.1400-1405. DOI: 10.1126/science.246.4936.1400.
8. Vorotilov K.A., Mukhortov V.M, Sigov A.S. Integrirovannye segnetoelektricheskie ustrojstva [Integrated ferroelectric devices]. Moscow: Energoatomizdat Publ., 2011, 175 p. (In Russian).
9. Whatmore R.W. Ferroelectrics, microsystems and nanotechnology, Ferroelectrics, 1999, vol. 225, issue 1, pp. 179-192. DOI: 10.1080/00150199908009126.
10. Trolier-McKinstry S., Muralt P. Thin film piezoelectrics for MEMS, Journal of Electroceramics. 2004, vol. 12, issue 1-2, pp. 7-17. DOI: 10.1023/B:JECR.0000033998.72845.51.
11. Bruchhaus R., Pitzer D., Schreiter M. et al. Optimized PZT thin films for pyroelectric IR detector arrays. Journal. of Electroceramics, 1999, vol. 3, issue 2, pp. 151-162. DOI: 10.1023/A:1009995126986
12. Muralt P. Micromachined infrared detectors based on pyroelectric thin films, Reports on Progress in Physics, 2001, vol. 64, no. 10, pp. 1339-1388. DOI: 10.1088/0034-4885/64/10/203.
13. Izyumskaya N., Alivov Y.-I., Cho S.-J. et al. Processing, structure, properties, and applications of PZT thin films. Critical Reviews in Solid State Materials Sciences, 2007, vol. 32, issue 3-4, pp. 111-202. DOI: 10.1080/10408430701707347.
14. Burdin D.A., Chashin D.V., Ekonomov N.A. et al. Nonlinear magneto-electric effects in ferromagnetic- piezoelectric composites. Journal of Magnetism and Magnetic Materials, 2014, vol. 358, pp. 98-104. DOI: 10.1016/j.jmmm.2014.01.062.
15. Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials, Nature, 2006, vol. 442, pp. 759-765. DOI: 10.1038/nature05023.
16. Ogawa T., Senda A., Kasanami T. Controlling the crystal orientations of lead titanate thin films, Japan Journal of Applied Physics, 1991, vol. 30, no. 9S, pp. 2145-2148. DOI: 10.1143/JJAP.30.2145.
17. Gruverman A., Rodriguez B.J., Kingon A.I. et al. Mechanical stress effect on imprint behavior of integrated ferroelectric, Applied Physics Letters, 2003, vol. 83, issue 4, pp. 728-730. DOI: 10.1063/1.1593830.
18. Spierings G.A.C.M., Dormans G.J.M., Moors W.G.J. et al. Stresses in Pt / Pb(Zr,Ti)O3 / Pt thin-film stackshttps://physchemaspects.ru/wp-admin/options-general.php for integrated ferroelectric capacitors, Journal of Applied Physics, 1995, vol. 78, issue 3, pp. 1926-1933. DOI: 10.1063/1.360230.
19. Pronin I.P., Kaptelov E.Yu., Gol’tsev A.V. et al. The effect of stresses on self-polarization of thin ferroelectric films, Solid State Physics, 2003, vol. 45, issue 9, pp.1768-1773. DOI: 10.1134/1.1611249.
20. Volpyas V.A., Kozyrev A.B. Thermalization of atomic particles in gases, Journal of Experimental and Theoretical Physics, 2011, vol. 113, issue 1. pp. 172-179. DOI: 10.1134/S1063776111060227.
21. Volpyas V.A., Tumarkin A.V., Mikhailov A.K. et al. Ion plasma deposition of oxide films with graded- stoichiometry composition: Experiment and simulation. Technical Physics Letters, 2016, vol. 42, issue 7, pp. 758-760. DOI: 10.1134/S1063785016070300.
22. Pronin I.P., Kukushkin S.A., Spirin V.V. et al. Formation mechanisms and the orientation of self-polarization in PZT polycrystalline thin films, Materials Physics and Mechanics, 2017, vol. 30, №1, pp. 20-34.
23. Vol’pyas V.A., Kozyrev A.B., Tumarkin A.V. et al. The element composition variation in lead zirconate titanate upon the ion-plasma deposition: experiment and simulation, Physics of the Solid State, 2019, vol. 61, issue 7, pp. 1223-1227. DOI: 10.1134/S1063783419070308.
24. Calame F., Muralt P. Growth and properties of gradient free sol-gel lead zirconate titanate thin films, Applied Physics Letters, 2007, vol. 90, issue 6, pp. 062907-1-062907-3. DOI: 10.1063/1.2472529.

⇐ Prevoius journal article | Content | Next journal article ⇒