Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Study of the properties of diffusion-hardening composite solders modified with a Ti – Mo powder mixture

V.M. Skachkov, L.A. Pasechnik, I.S. Medyankina, N.A. Sabirzyanov

The Institute of Solid State Chemistry of the Ural Branch of RAS

DOI: 10.26456/pcascnn/2021.13.392

Original article

Abstract: The article discusses the possibility of regulating the properties of diffusion-hardening solder based on low-melted gallium-tin, gallium-indium-tin, gallium-tin-zinc alloys and a solid component consisting of a copper-tin alloy powder by introducing a mixture of inert powders of metallic titanium and molybdenum after the heat treatment at various temperatures. The microhardness and thermal stability of composite diffusion-hardening solders are evaluated. It is shown that the heat treatment at higher temperatures contributes to the transition of the solder to an equilibrium state, while a sharp increase in hardness occurs. The phases formed as a result of diffusion hardening were determined by the method of X-ray phase analysis. It is shown that at different processing temperatures, different phases are formed – nanoscale intermetallic compounds. Due to small additives of fillers that are inert or weakly interacting with gallium, but are well wetted by it, the characteristics of the diffusion-hardening solder are significantly improved.

Keywords: composite diffusion-hardening solders, metal powder, properties, microhardness, differential thermal analysis

  • Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS
  • Liliya A. Pasechnik – Ph. D., Leading Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS
  • Irina S. Medyankina – postgraduate student, Junior Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS
  • Nail A. Sabirzyanov – Dr. Sc., Chief Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS

Reference:

Skachkov, V.M. Study of the properties of diffusion-hardening composite solders modified with a Ti – Mo powder mixture / V.M. Skachkov, L.A. Pasechnik, I.S. Medyankina, N.A. Sabirzyanov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 392-399. DOI: 10.26456/pcascnn/2021.13.392. (In Russian).

Full article (in Russian): download PDF file

References:

1. Novoseltseva M.M. Socio-economic measures in industry aimed at labor protection [Socal and economic measures in industry aimed at labor protection], Zametki Uchenogo [Scientist 's Notes], 2020, no. 8, pp. 238-245. (In Russian).
2. Yatsenko S.P., Hayak V.G. Kompozicionnye pripoi na osnove legkoplavkih splavov [Composite solders based on low-melting alloys]. Ekaterinburg, Ural Branch of RAS Publ., 1997, 186 p. (In Russian).
3. Yatsenko S.Р., Pasechnik L.A., Skachkov V.M., Rubinshtein G.V. Gallii: Tehnologii polucheniy I primenenie zidkih splavov [Technologies for the production and application of liquid alloys]. Moscow, RAS Publ., 2020, 344 p. (In Russian).
4. Nagy E., Kristcaly F., Gyenes A., Gaácsi Z. Investigation of intermetallic compounds in Sn–Cu–Ni lead-free solders, Archives of Metallurgy and Materials, 2015, vol. 60, issue 2b, pp. P. 1511-1515. DOI: 10.1515/amm-2015-0163.
5. Goyda E.Yu., Goyda E.Yu., Ignatiev I.E., Shubin A.B. O mikrotverdosti kompozita Ga–Cu–Sn, poluchennogo mul'tivibratsionnoj obrabotkoj ego zhidkotverdoj smesi [On the microhardness of the composite Ga–Cu–Sn obtained multivibration the processing idkategori mixture], Butlerovskie Soobshcheniya [Butlerov Communications], 2018, vol. 56, no. 10, pp. 112-117. DOI: 10.37952/ROI-jbc-01/18-56-10-112. (In Russian).
6. Skachkov V.M., Shevyrev N.A., Pasechnik L.A., Yatsenko S.P. Composite solders on the basis of metal powders and gallium alloy, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 455-464. DOI: 10.26456/pcascnn/2017.9.455. (In Russian).
7. Skachkov V.M., Pasechnik L.A., Skachkova O.V., Yatsenko S.P. Diffuzionno-tverdeyushchij pripoj na osnove splava gallij-indij-olovo i poroshka metallov PMOSF5, uprochnennyj titanom [Diffuzionno-hardening solders based alloy gallium-indium-tin and powder of metal PCTSP5 reinforced with titanium], Fiziko- khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 600-608. DOI: 10.26456/pcascnn/2018.10.600. (In Russian).
8. Skachkov V.M., Pasechnik L.A., Yatsenko S.P. Izuchenie svojstv diffuzionno-tverdeyushchego kompozitsionnogo pripoya GaSn–CuSn–Mo [Study of properties of diffusion-hardening composite solder GaSn–CuSn–Mo], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 722-730. DOI: 10.26456/pcascnn/2020.12.722. (In Russian).
9. Poroshok splava med'-olovo sfericheskoi formy. Tekhnicheskie usloviya [Spherical copper-tin alloy powder. Specifications]. Specifications RF, no. 48-1318-03-89. Мoscow, 1989. 9 p. (In Russian).
10. Titan gubchatyj Tekhnicheskie usloviya: GOST 17746-96 [Sponge titanium. Specifications: State Standard 17746-96]. Minsk, 1996. 6 p. (In Russian).
11. Molibden metallicheskii vysokoi chistoty [High Purity Molybdenum Powder]. Specifications RF, no. 48-19-69-80. Moscow, 1980. 32 p. (In Russian).
12. Shubin A.B., Ignatieva E.V., Ignatiev I.E. Poluchenie metallicheskikh kompozitsij iz smesej med'- soderzhashchego poroshka i gallievogo rasplava: opredelenie optimal'nykh parametrov vibroobrabotki [Producing of the metallic compositions from the mixes of copper-containing powders and gallium melts: determination of optimum vibration treatment parameters], Butlerovskie soobtscheniy [Butlerov Communications], 2016, vol. 45, no. 3, pp. 116-121. (In Russian).
13. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: https://www.icdd.com/pdf-2/ (accessed 15.06.2021).
14. Speyer R.F. Thermal Analysis of Materials. New York, Marcel Dekker Publ., 1994, 298 p.

⇐ Prevoius journal article | Content | Next journal article ⇒