Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Fractal analysis of the nanostructure of a heterogeneous high coercity alloy

E.M. Semenova1, M.B. Lyakhova1, A.I. Sinkevich1, D.V. Ivanov1, A.S. Antonov1,2, N.Yu. Sdobnyakov1

1 Tver State University
2 Tver State Agricultural Academy

DOI: 10.26456/pcascnn/2021.13.368

Original article

Abstract: The atomic force microscopy was used to obtain images of the nanostructure of components of a heterogeneous intermetallic SmCoCuFeZr compound in a highly coercive state. At the microlevel, two types of regions were distinguished in the alloys, differing in integral elemental composition and coercivity intervals. Based on the atomic force microscopy data, an analysis of the fractal characteristics of the surface is carried out on both of the above types of areas. It is shown that the fractal dimension of the nanostructure correlates with the local coercivity of the phase components. The phase component with a relatively low coercivity demonstrates the possibility of the existence of structures with fractal dimensions in the 2,396–2,475 range corresponding to a moderately developed fractal relief. In this case, the high-coercive component with a regular nanostructure is characterized by a higher fractal dimension of 2,452–2,508, and in some areas of the sample there were regions with a fractal dimension up to the value of 2,577.

Keywords: atomic force microscopу, nanorelief, nanostructure, surface morphology, coercivity, fractal dimension

  • Elena M. Semenova – Ph. D., Docent, Condensed Matter Physic Department, Tver State University
  • Marina B. Lyakhova – Ph. D., Docent, Condensed Matter Physic Department, Tver State University
  • Artem I. Sinkevich – 1st year postgraduate student, Condensed Matter Physic Department, Tver State University
  • Dmitry V. Ivanov – 4th year postgraduate student, General Physics Department, Tver State University
  • Alexander S. Antonov – Ph. D., Researcher, Tver State University, Senior Lecturer Tver State Agricultural Academy
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Semenova, E.M. Fractal analysis of the nanostructure of a heterogeneous high coercity alloy / E.M. Semenova, M.B. Lyakhova, A.I. Sinkevich, D.V. Ivanov, A.S. Antonov, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 368-375. DOI: 10.26456/pcascnn/2021.13.368. (In Russian).

Full article (in Russian): download PDF file

References:

1. Fidler G., Scalicky P., Rothwarf F. High resolution electron study of Sm(CoCuFeZr)7,5 magnets, IEEE Transactions on Magnetics, 1983, vol. 19, issue 5, pp. 2041-2043. DOI: 10.1109/TMAG.1983.1062752.
2. Semenova E.M., Lyakhova M.B., Ivanova A.I., Ulyanov M.N. Micro- and nanostructures of RCoCuFeZr heterogeneous alloys with high temperature stability, Materials Science Forum, 2016, vol. 845, pp. 46-49. DOI: 10.4028/www.scientific.net/MSF.845.46.
3. Fidler J., Schrefl T., Hoefinger S., Hajduga M. Recent developments in hard magnetic bulk materials, Journal of Physics: Condensed Matter, 2004, vol. 16, no. 5, pp. S455-S470. DOI: 10.1088/0953-8984/16/5/007.
4. Lileev A.S., Pinkas V.V., Voronchikhina K.V., Gunbin A.V. Reversible changes of coercive force in Sm–Co–Cu–Fe–Zr alloy for permanent magnets under cyclic heat treatment, Metal Science and Heat Treatment, 2018, vol. 60, issue 7-8, pp. 489-493. DOI: 10.1007/s11041-018-0306-2.
5. Lyakhova M.B., Semenova E.M., Ivanov R.P. High-temperature behavior of hard magnetic alloys (RZr)(CoCuFe)z(R=Sm, Gd), Metal Science and Heat Treatment, 2015, vol. 56, issue 11-12, pp. 602-608.DOI: 10.1007/s11041-015-9807-4.
6. Lyahova M.B., Semenova E.M., Suponev N.P., Ivanov R.P., Ayriyan E.L. Vliyanie nanostruktury na parametry i konfiguratsiyu magnitnykh domenov splavov Sm–Zr–Co–Cu–Fe [Effect of nanostructure on parameters and configuration of Sm–Zr–Co–Cu–Fe alloys magnetic domains], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2012, issue 4, pp. 333-338. (In Russian).
7. DigitalSurf. Available at: www.url: https://www.digitalsurf.com (accessed 15.08.2021).
8. Ivanov D.V., Vasilyev S.A., Sdobnyakov N.Yu. et al. Modelirovanie protsessa formirovaniya fraktal'nykh metallicheskikh plenok [Simulation of the fractal metal films formation], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 424-437. DOI: 10.26456/pcascnn/2020.12.424. (In Russian).
9. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver, Tver State University Publ., 2019, 168 p. (In Russian).
10. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Determination of the fractal size of titanium films at different scales, Journal of Physics: Conference Series, 2021, vol. 1758, art. no. 012013, 6 p. DOI: 10.1088/1742-6596/1758/1/012013.
11. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 473-486. (In Russian).
12. Ţǎlu Ş., Stach S., Valedbagi S., Elahi S.M., Bavadi R. Surface morphology of titanium nitride thin films synthesized by DC reactive magnetron sputtering, Materials Science-Poland, 2015, vol. 33, issue 1, pp. 137-143. DOI: 10.1515/msp-2015-0010.
13. Mortazavi S.H., Ghoranneviss M., Dadashbaba M., Alipour R. Synthesis and investigation of silicon carbide nanowires by HFCVD method, Bulletin of Materials Science, 2016, vol. 39, issue 4, pp. 953-960. DOI: 10.1007/s12034-016-1183-1.
14. Semenova E.M., Lyakhova M.B., Kuznetsova Yu.V. et al. A comparative analysis of magnetic properties and microstructure of high coercivity Sm(CoCuFe)5 quasi-binary alloys in the framework of fractal geometry, Journal of Physics: Conference Series, 2020, vol. 1658, art. no. 012050, 6 p. DOI: 10.1088/1742- 6596/1658/1/012050.
15. Whitehouse D. Surfaces and their measurement. Oxford, Butterworth-Heinemann, 2004, 432 p.
16. Kubatova D., Melichar M. Roughness evaluation using Abbott-Firestone curve parameters, Proceedings of the 30th DAAAM International Symposium, ed. by B. Katalinic. Vienna, Austria, DAAAM International Publ., 2019, pp. 0467-0475. DOI: 10.2507/30th.daaam.proceedings.063.
17. GOST R ISO 4287-2014. Geometricheskie kharakteristiki izdelij (GPS). Struktura poverkhnosti. Profil'nyj metod. Terminy, opredeleniya i parametry struktury poverkhnosti [Russian State Standard ISO 4287-2014 Geometrical Product Specifications (GPS). Surface texture. Profile method. Terms, definitions and surface texture parameters]. Moscow, Standartinform Publ., 2014. 20 p. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒