Influence of alloying Ti, Mo and W on the kinetic and strength characteristics of membrane alloys based on Nb and V
V.A. Polukhin, R.M. Belyakova, E.D. Kurbanova
Institute of Metallurgy of the Ural Branch of the Russian Academy of Science
DOI: 10.26456/pcascnn/2021.13.345
Original article
Abstract: An analysis was carried out of influence of , Ti Mo and W on the nature of the amorphous nano- and crystalline structures on the strength and kinetic characteristics – diffusion D and permeability Φ of hydrogen in membrane alloys based on binary Nb – Ni and V – Ni . Doping with Nb – V alloys by titanium, molybdenum and tungsten leads to the gradual replacement of niobium and vanadium, and promotes the formation of several minor phases while acting as barriers for hydrogen diffusion, but contributing hydride reduction processes. A close dependence of the hydrogen kinetics was revealed not only on thermodynamic parameters – temperature and pressure, but also on the presence of free volume in the formed amorphous, nanocrystalline and crystalline alloys. So, the processes of selectivity, the dynamics of hydrogen – its flux J determined by the product of diffusion D and permeability Φ, J = D × Φ depend on the basic composition and the choice of alloying elements (Ti, Mo and W), as well as the formed structures – amorphous, nanocrystalline and duplex, represented by multiphase crystalline microstructures. It was found that a carefully selected composition determines the productivity of the selective process and promotes the release of high-purity hydrogen with its subsequent applications for green energy.
Keywords: hydrogen, amorphous and nanocrystalline alloys, V, Ni, Ti, Zr, Nb, structuring, selectivity, solubility, permeability, diffusion, hydrides, accumulation, thermal stability, fragility, crystallization, modeling, icosahedral clusters, nanophases, duplex structure, Laves phases.
- Valery A. Polukhin – Dr. Sc., Chief Researcher, Institute of Metallurgy of the Ural Branch of the Russian Academy of Science
- Rimma M. Belyakova – Ph. D., Senior Researcher, Institute of Metallurgy of the Ural Branch of the Russian Academy of Science
- Elmira D. Kurbanova – Researcher, Institute of Metallurgy of the Ural Branch of the Russian Academy of Science
Reference:
Polukhin, V.A. Influence of alloying Ti, Mo and W on the kinetic and strength characteristics of membrane alloys based on Nb and V / V.A. Polukhin, R.M. Belyakova, E.D. Kurbanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 345-357. DOI: 10.26456/pcascnn/2021.13.345. (In Russian).
Full article (in Russian): download PDF file
References:
1. Dolan M.D., Viano D.M., Langley M.J., Lamb K.E. Tubular vanadium membranes for hydrogen purification Dolan, Journal of Membrane Science, 2018, vol. 549, pp. 306-311. DOI: 10.1016/j.memsci.2017.12.031.
2. Yan E., Li X., Rettenmayr M. et al. Design of hydrogen permeable Nb-Ni-Ti alloys by correlating the microstructures, solidification paths and hydrogen permeability, International Journal of Hydrogen Energy, 2014, vol. 39, issue 7, pp. 3505-3516. DOI: 10.1016/j.ijhydene.2013.12.060.
3. Hashi K., Ishikawa K., Matsuda T., Aoki K. Hydrogen permeation characteristics of multi-phase Ni-Ti-Nb alloys, Journal of Alloys and Compounds, 2004, vol. 368, issue 1-2, pp. 215-220. DOI: 10.1016/j.jallcom.2003.08.064.
4. Li X., Liang X., Liu D. et al. Microstructure dependent hydrogen permeability in eutectic Nb30Ti35Co35, International Journal of Hydrogen Energy, 2016, vol. 41, issue 30, pp. 13086-13092. DOI: 10.1016/j.ijhydene.2016.05.238.
5. Vatolin N.A., Polukhin V.A., Belyakova R.M., Pastukhov E.A. Simulation of the influence of hydrogen on the structural properties of amorphous iron, Materials Science and Engineering, 1988, vol. 99, issue 1-2, pp. 551-554. DOI: 10.1016/0025-5416(88)90396-5.
6. Pastukhov E.A., Sidorov N.I., Polukhin V.A., Chentsov V.P. Short order and transport in amorphous palladium materials, Defect and Diffusion Forum, 2009, vol. 283-286, pp. 149-154. DOI: 10.4028/www.scientific.net/DDF.283-286.149.
7. Polukhin V.A., Kurbanova E.D., Vatolin N.A. Formation of a intermediate order in metallic glasses and a long order in nanocrystalline alloys with allowance for the character of binding and the transformation of the short order in a melt, Russian Metallurgy (Metally), 2018, vol. 2018, issue 2, pp. 95-109. DOI: 10.1134/S0036029518020167.
8. Sarker S., Isheim D., King G. et al. Icosahedra clustering and short range order in Ni-Nb-Zr amorphous membranes, Scientific Reports, 2018, vol. 8, art. no. 6084, 14 p. DOI: 10.1038/s41598-018-24433-9.
9. Polukhin V.A., Belyakova R.M., Rigmant L.K. Spatial arrangement of the fragmented phases in nanostructured 3d metal alloys during a change in the melt composition and cooling conditions, Russian Metallurgy (Metally), 2010. vol. 2010, issue 8, pp. 681-698. DOI: 10.1134/S0036029510080045.
10. Mendelev M.I., Kramer M.J., Ott R.T., Sordelet D.J. Molecular dynamics simulation of diffusion in supercooled Cu - Zr alloys, Philosophical Magazine, 2009, vol. 89, issue 2, pp. 109-126. DOI: 10.1080/14786430802570648.
11. Dai Y., Li J.H., Che X.L., Liu B.X. Glass-forming region of the Ni-Nb-Ta ternary metal system determined directly from n-body potential through molecular dynamics simulations, Journal of Materials Research, 2009, vol. 24, issue 5, pp. 1815-1819. DOI: 10.1557/jmr.2009.0198.
12. Saeki Y., Yamada Y., Ishikawa K. Relationship between hydrogen permeation and microstructure in Nb-TiNi two-phase alloys, International Journal of Hydrogen Energy, 2014, vol. 39, issue 23, pp. 12024-12030. DOI: 10.1016/j.ijhydene.2014.05.192.
13. Liu D.M., Li X.Z., Geng H.Y.et al. Development of Nb35Mo5Ti30Ni30 alloy membrane for hydrogen separation applications, Journal of Membrane Science, 2018, vol. 553, pp. 171-179. DOI: 10.1016/j.memsci.2018.02.052.
14. Li X., Liu D., Chen R. et al. Changes in microstructure, ductility and hydrogen permeability of Nb-(Ti,Hf)Ni alloy membranes by the substitution of Ti by Hf, Journal of Membrane Science, 2015, vol. 484, pp. 47-56. DOI: 10.1016/j.memsci.2015.03.002.
15. Polukhin V.A., Sidorov N.I., Vatolin N.A. Presolidification changes in the structural–dynamic characteristics of glass-forming metallic melts during deep cooling, vitrification, and hydrogenation, Russian Metallurgy (Metally), 2019, vol. 2019, issue 8, p. 758-780. DOI: 10.1134/S0036029519080123.
16. Ishikawaa K., Seki Y., Kita K., et al. Hydrogen permeability and microstructure of rapidly quenched Nb - TiNi alloys, Journal of Alloys and Compounds, 2011, vol. 509, supplement 2, pp. S790-S793. DOI: 10.1016/j.jallcom.2010.10.126.
17. Lee D.-Y., Fleury E. Hydrogen permeation properties of Pd - coated Ni-Nb-Ti-Zr amorphous alloys, Metals and Materials International, 2008, vol. 14, issue 5, pp. 545-548. DOI: 10.3365/met.mat.2008.10.545.
18. Рalumbo O., Trequattrini F., Pal N. et al. Hydrogen absorption properties of amorphous (Ni0,6Nb0,4-yTay)100-xZrx membranes, Progress in Natural Science: Materials International, 2017, vol. 27, issue 1, pp. 126-131. DOI: 10.1016/j.pnsc.2017.01.002.
19. Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 2005, vol. 50, issue 5, pp. 511-678. DOI: 10.1016/j.pmatsci.2004.10.001.
20. Wong T., Yu Z., Suzuki K. et al. Effect of annealing on the hydrogen permeation and mechanical behaviour of Nb - Ni - Zr alloy membranes, Materials Science Forum, 2010, vol. 654-656, pp. 2851-2854. DOI: 10.4028/www.scientific.net/MSF.654-656.2851.
21. Motemani, Y., Buenconsejo P.J.S., Craciunescu C., Ludwig A. High-temperature shape memory effect in Ti - Ta thin films sputter deposited at room temperature, Advanced Materials Interfaces, 2014, vol. 1, issue 3, art. no. 1400019, 5 p. DOI: 10.1002/admi.201400019.
22. Dolan M.D., Kellam M.E., McLennan K.G., Liang D., Song G. Hydrogen transport properties of several vanadium-based binary alloys, International Journal of Hydrogen Energy, 2013, vol. 38, issue 23, pp. 9794-9799. DOI: 10.1016/j.ijhydene.2013.05.073.
23. Polukhin V.A., Sidorov N.I., Belyakova R.M. Vodorodopronitsaemost' amorfnykh, nano- i kristallicheskikh splavov na osnove zheleza i nikelya [Hydrogen permeability of amorphous, nano- and crystalline alloys based on iron and nickel], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. P. 457-473. DOI: 10.26456/pcascnn/2020.12.457. (In Russian).
24. Belyakova R.M., Polukhin V.A. Pronitsaemost' vodoroda skvoz' splavy tantala, legirovannye Nb i W [Hydrogen permeability through tantalum alloys allowed with Nb and W ], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 356-369. DOI: 10.26456/pcascnn/2020.12.356. (In Russian).
25. Galashev A.E., Polukhin V.A. Computer-assisted study of silver absorption by porous silicon dioxide nanoparticles, Colloid Journal, 2011, vol. 73, issue 6, pp. 761-767. DOI: 10.1134/S1061933X11050036.
26. Suzuki A., Yukawa H.A. A Review for consistent analysis of hydrogen permeability through dense metallic membranes, Membranes, 2020, vol. 10, issue 6, art. no. 120, 20 p. DOI: 10.3390/membranes10060120.
27. Polukhin V.A., Belyakova R.M. The specifics of the formation of Friauf cluster structures, 2D - packaging of the kagome and Laves phases during the hydrogenation of titanium alloys. Kinetics of hydrogen, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 345-355. DOI: 10.26456/pcascnn/
28. Awakura Y., Nambu T. , Matsumoto Y., Yukawa H. Hydrogen solubility and permeability of Nb–W–Mo alloy membrane, Journal of Alloys and Compounds, 2011, vol. 509, supplement 2, pp. S877-S880. DOI: 10.1016/j.jallcom.2010.10.133.
29. Zhang H., Wang Z., Liu F. et al. Mechanical properties of Nb–Ti–Ni alloy membranes for hydrogen permeation, Rare Metal Materials and Engineering, 2016, vol. 45, no. 6, pp. 1443-1448. DOI: 10.1016/S1875-5372(16)30128-X.