Charge distribution in the Al2O3-SiO2 system exposed to ionizing radiation
G.A. Mustafaev1, A.G. Mustafaev2, N.V. Cherkesova1
1 Kabardino-Balkarian State University
2 Dagestan State University of National Economy
DOI: 10.26456/pcascnn/2021.13.329
Original article
Abstract: Metal-insulator-semiconductor (MIS) structures are key elements of modern electronic technology, including devices operating under conditions of exposure to penetrating radiation. One of the possible approaches to reducing radiation effects in MIS structures is the use of dielectrics, which reduce the generation and accumulation of excess space charge in the bulk of the dielectric. We investigated the system of dielectrics Al2O3–SiO2. The study shows the suitability of using MIS structures based on a system of dielectrics for formation of devices with high radiation resistance. Applying a Al2O3 layer on top of the SiO2 layer improves the performance of MIS structures by increasing the uniformity of parameters. The main effect of the influence of the Al2O3 layer on the parameters of the structures is to reduce the mechanical stresses at the interface SiO2 -substrate. The trapping of electrons in Al2O3 , compensates for the charge of the trapped holes in SiO2 , and reduces the parasitic current through Al2O3.
Keywords: ionizing radiation, surface states, charge distribution, system of dielectrics, radiation resistance
- Gasan A. Mustafaev – Dr. Sc., Full Professor, Department of Electronics and Information Technologies, Kabardino-Balkarian State University
- Arslan G. Mustafaev – Dr. Sc., Full Professor, Department of Information Technologies and Information Security, Dagestan State University of National Economy
- Natalya V. Cherkesova – Ph. D., Docent, Department of Electronics and Information Technologies, Kabardino-Balkarian State University
Reference:
Mustafaev, G.A. Charge distribution in the Al2O3-SiO2 system exposed to ionizing radiation / G.A. Mustafaev, A.G. Mustafaev, N.V. Cherkesova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 329-337. DOI: 10.26456/pcascnn/2021.13.329. (In Russian).
Full article (in Russian): download PDF file
References:
1. Gaillardin M., Goiffon V., Marcandella C. et al. Radiation effects in CMOS isolation oxides: differences and similarities with thermal oxides, IEEE Transactions on Nuclear Science, 2013, vol. 60, issue 4, pp. 2623-2629. DOI: 10.1109/TNS.2013.2249094.
2. Barnaby H.J., McLain M.L., Esqueda I.S., Chen X.J. Modeling ionizing radiation effects in solid state materials and CMOS devices, IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, vol. 56, issue 8, pp. 1870-1883. DOI: 10.1109/TCSI.2009.2028411.
3. Matsunaga K., Tanaka T., Yamamoto T., Ikuhara Y. First-principles calculations of intrinsic defects in Al2O3 Physical Review B, 2003, vol. 68, issue 8, pp. 085110-1-085110-9. DOI: 10.1103/PhysRevB.68.085110.
4. Shaw C., Potter K., Morgan K. et al. Total dose radiation hardening of MOS transistors by fluorine implantation, 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 2-6 October 2017, Geneva, Switzerland. New York, IEEE Publ., 2017, pp. 1-3. DOI: 10.1109/RADECS.2017.8696125.
5. Lee C., Cui X., Zhang T. et al. Evaluating the impact of thermal annealing on A2O3 / с –Si interface properties by non-destructive measurements, IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), 10-15 June 2018, Waikoloa, HI, USA. New York, IEEE Publ., 2018, pp. 2788-2791. DOI: 10.1109/PVSC.2018.8547787.
6. Mustafaev G.A., Cherkesova N.V., Mustafaev A.G. Konstruktivnye priemy uvelicheniya radiatsionnoj stojkosti KNI MOP- tranzistorov k nakoplennoj doze ioniziruyushchego izlucheniya [Constructive methods of increasing the radiation resistance of SOI MOS transistors to the accumulated dose of ionizing radiation], Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta [Proceedings of the Kabardino-Balkarian State University], 2018, vol. 8, no. 4, pp. 10-12. (In Russian).
7. Petuhov K.A., Popov V.D. Vliyanie elektricheskogo rezhima na obrazovanie poverkhnostnykh defektov v MOP-tranzistore pri dlitel'nom nizkointensivnom vozdejstvii gamma-izlucheniya [Influence of electric mode to the formation of surface defects in MOS transistor at low-intensity prolonged exposure to gamma radiation], Voprosy atomnoj nauki i tekhniki. Seriya: Fizika radiatsionnogo vozdejstviya na radioelektronnuyu apparaturu [Questions of atomic science and technics. Series: Physics of radiation effects on radio-electronic equipment], 2017, no. 1, pp. 22-25. (In Russian).
8. Mustafaev A.G., Shavaev Kh.N., Mustafaev A.G., Mustafaev G. A. Sposob povysheniya radiatsionnoj stojkosti poluprovodnikovykh priborov [Method for enhancing radiation stability of semiconductor devices]. Patent RF, no. 2308785, 2007. (In Russian).
9. Bhandaru S., Zhang E.X., Fleetwood D.M. et al. Accelerated oxidation of silicon due to x-ray irradiation, 12th European Conference on Radiation and Its Effects on Components and Systems, 19-23 September 2011, Seville, Spain. New York, IEEE Publ., 2011, pp. 77-79. DOI: 10.1109/RADECS.2011.6131371.
10. Dolzhenko D.I., Kapralova V.M., Sudar N.T. The dielectric properties and radiation resistance of aluminum oxide layers obtained by atomic layer deposition, IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), 22-23 October 2018, St. Petersburg, Russia. New York, IEEE Publ., 2018, pp. 182-185. DOI: 10.1109/EExPolytech.2018.8564381.
11. Seo M.Y., Cho E.N., Kim C.E., Moon P., Yun I. Characterization of Al2O3 films grown by electron beam evaporator on Si substrates, 3rd International Nanoelectronics Conference (INEC), 3-8 January 2010, Hong Kong, China. New York, IEEE Publ., 2010, pp. 238-239. DOI: 10.1109/INEC.2010.5424657.
12. Hoex B., Gielis J.J.H., van de Sanden M.C.M., Kessels W.M.M. On the с – Si surface passivation mechanism by the negative-charge-dielectric Al2O3 , Journal of Applied Physics, 2008, vol. 104, issue 11, pp. 113703-1-113703-7. DOI: 10.1063/1.3021091.