Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Thermal studies of porous aluminum oxide membranes

E.N. Muratova

Saint Petersburg Electrotechnical University «LETI»

DOI: 10.26456/pcascnn/2021.13.312

Short communication

Abstract: Study of optical properties of nanoscale membranes of porous anodic alumina can significantly expand the scope of this material. The paper presents the results of thermal imaging studies of porous anodic alumina membranes with various structural parameters. Temperature distribution profiles for membranes obtained in various electrolytes based on sulfuric, oxalic and orthophosphoric acids have been constructed. It was found that the shielding of IR radiation is more pronounced (approximately 30 %) in membranes with a smaller pore diameter ds pore≈20 nm compared to membranes with a larger pore diameter dl pore≈200 nm. This is due to the scattering of thermal radiation on structural inhomogeneities, which are much higher in porous anodic aluminamembranes obtained with sulfuric acid. Small-diameter pores, under-etched areas and defects act assources of inhomogeneity. Also, due to the increased activity of sulfuric acid in comparison with other acids used, more anions are incorporated into the structure of the sample.

Keywords: porous aluminum oxide, membranes, pore diameter, optical properties, thermal imager, IR radiation

  • Ekaterina N. Muratova – Ph. D., Docent, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»

Reference:

Muratova, E.N. Thermal studies of porous aluminum oxide membranes / E.N. Muratova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 312-319. DOI: 10.26456/pcascnn/2021.13.312. (In Russian).

Full article (in Russian): download PDF file

References:

1. Sulka G.D. Highly ordered anodic porous alumina formation by self-organized anodizing, Nanostructured Materials in Electrochemistry, ed. by A. Eftekhari. Weinheim, Wiley‐VCH Verlag GmbH & Co. KGaA, 2008, chapter 1, pp. 1-116. DOI: 10.1002/9783527621507.ch1.
2. Muratova E.N., Luchinin V.V., Moshnikov V.A. et al. Features of the formation of nanoporous membranes based on alumina from foil and new fields of applications, Glass Physics and Chemistry, 2017, vol. 43, issue 2, pp. 163-169. DOI: 10.1134/S1087659617020122.
3. Muratova E.N. Iskusstvenno i estestvenno uporyadochennye mikro- i nanorazmernye kapillyarnye membrany na osnove anodnogo oksida alyuminiya [Artificially and naturally ordered micro- and nano-sized capillary membranes based on anodic aluminum oxide], Cand. tech. sci. diss. Saint Petersburg, ETU «LETI» Publ., 2014, 118 p. (In Russian).
4. Cheng C., Ngan A.H.W. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization, Nanotechnology, 2013, vol. 24, no. 1, art. no. 215602, 10 p. DOI: 10.1088/0957-4484/24/21/215602.
5. Cantelli L., Santos J.S., Trivinho-Strixino F. The effect of anodization temperature on optical properties of nanoporous anodic alumina (NAA) films, Journal of Electroanalytical Chemistry, 2016, vol. 780, pp. 386-390. DOI: 10.1016/j.jelechem.2016.01.009.
6. Moshnikov V.A., Gracheva I.E., Kuznezov V.V. et al., Journal of Non-Crystalline Solids, 2010, vol. 356, issue 37-40, pp. 2020-2025. DOI: 10.1016/j.jnoncrysol.2010.06.030.
7. Nalimova S.S., Myakin S.V., Moshnikov V.A. Controlling surface functional composition and improving the gas-sensing properties of metal oxide sensors by electron beam processing, Glass Physics and Chemistry, 2016, vol. 42, issue 6, pp. 597-601. DOI: 10.1134/S1087659616060171.
8. Kauppinen C., Isakov K., Sopanen M. Grass-like alumina with low refractive index for scalable, broadband, omnidirectional antireflection coatings on glass using atomic-layer deposition, ACS Applied Materials & Interfaces, 2017, vol. 9, issue 17, pp. 15038-15043. DOI: 10.1021/acsami.7b01733.
9. Tsai J.K., Tu Y.S. Fabrication of polymeric antireflection film manufactured by anodic aluminum oxide template on dye-sensitized solar cells, Materials, 2017, vol. 10, issue 3, art. no. 296, 8 p. DOI: 10.3390/ma10030296.
10. Li, H., Cao L., Fu T. et. al. Morphology-dependent high antireflective surfaces via anodic aluminum oxide nanostructures, Applied Surface Science, 2019, vol. 496, art. no. 143697, 6 p. DOI: 10.1016/j.apsusc.2019.143697.
11. Matyushkin L.B., Muratova E.N., Panov M.F. Determination of the alumina membrane geometrical parameters using its optical spectra, Micro & Nano Letters, 2017, vol. 12, issue 2, pp. 100-103. DOI: 10.1049/mnl.2016.0353.
12. Muratova E.N., Matyushkin L.B., Moshnikov V.A., Chernyakova K.V., Vrublevsky I.A. IR scattering by optically inhomogeneous nanoporous anodic alumina films, Inorganic Materials, 2018, vol. 54, issue 6, pp. 564-567. DOI: 10.1134/S0020168518060080.

⇐ Prevoius journal article | Content | Next journal article ⇒