Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Improving the efficiency of the contact force method of the atomic force spectroscopy

Yu.V. Kuznetsova

Tver State University

DOI: 10.26456/pcascnn/2021.13.243

Short communication

Abstract: We propose a technique that optimizing the method of contact force spectroscopy. With the help of a macro language integrated into the NOVA software of the Solver P47 scanning probe microscope, an algorithm was developed that allows analyzing force curves without leaving its main interface. The approbation of the method was done on samples of synthesized polymer, since one of the most important mechanical properties determining their range of applications is elasticity. In this paper, local values of the Young’s modulus on the polymer surface are obtained by the method of contact force spectroscopy using the YUNG script developed using a macro language integrated into the control program of a scanning probe microscope. It is shown that the use of the YUNG script makes it possible to optimize the method of contact force spectroscopy by searching for the exponent γ, choosing a model for calculating the interaction force for further determination of the local Young modulus.

Keywords: atomic force microscopy, the method of contact atomic force spectroscopy, Young's modulus, elastic modulus, Hertz model

  • Yulia V. Kuznetsova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University

Reference:

Kuznetsova, Yu.V. Improving the efficiency of the contact force method of the atomic force spectroscopy / Yu.V. Kuznetsova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 243-249. DOI: 10.26456/pcascnn/2021.13.243. (In Russian).

Full article (in Russian): download PDF file

References:

1. Myasnichenko V.S., Sdobnyakov N.Yu., Bazulev A.N., Ershov P.M., Davydenkova E.M. Razmernye zavisimosti koeffitsienta linejnogo rasshireniya i modulya uprugosti mono- i bimetallicheskikh nanochastits [Size dependences of linear expansion and volume elasticity of mono- and bimetallic nanoclusters], Fiziko- khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, no. 12, pp. 260-273. DOI: 10.26456/pcascnn/2020.12.260. (In Russian).
2. Kablov E.N. Innovatsionnye razrabotki FGUP «VIAM» GNTs RF po realizatsii «Strategicheskikh napravlenij razvitiya materialov i tekhnologij ikh pererabotki na period do 2030 goda» [Innovative developments of FSUE «Russian scientific research institute of aviation materials» SRC of the RF for the implementation of «Strategic directions for the development of materials and technologies for their processing for the period up to 2030»], Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2015, no. 1 (34), pp. 3-33. (In Russian).
3 Kuznetsova Yu.V, Verolainen V.A., Kapustina S.S. Poluchenie lokal'nykh znachenij modulya Yunga na poverkhnosti polimerov metodom kontaktnoj atomno-silovoj spektroskopii [Obtaining local values of the Young's modulus on the polymer surface by contact atomic force spectroscopy], Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Khimiya [Herald of Tver State University. Series: Chemistry], 2020, no. 4 (42). pp. 132-137. (In Russian).
4. Mikitaev A.K., Kozlov G.V., Zhansitov A.A., Khashirova S.Yu., Zaikov G.E. Prognozirovanie i regulirovanie modulya uprugosti polimerov [Predicting and regulating the elastic modulus of polymers], Vestnik tekhnologicheskogo universiteta [Technological University Bulletin], 2016, vol. 19, no 1, p. 96-99. (In Russian).
5. Narisawa I. Prochnost` polimerny`kh materialov [Strength of polymeric materials]. Moscow, Khimiya Publ., 1987, 400 p. (In Russian).
6. Butt H.J., Cappella B., Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications, Surface Science Reports, 2005, vol. 59, issue 1-6, pp. 1-152. DOI: 10.1016/j.surfrep.2005.08.003.
7. García, R. Amplitude modulation atomic force microscopy. Weinheim, Germany, WILEY-VCH Verlag & Co. KGaA, 2010, 179 p. DOI: 10.1002/9783527632183.
8. Colinson D.W., Sheridan R.J., Palmeri M.J., Brinson L.C. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy, Progress in Polymer Science, 2021, vol. 119, art. no. 101420, 114 p. DOI: 10.1016/j.progpolymsci.2021.101420.
9. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp.473-486. (In Russian).
10. Skaniruyushchie zondovye mikroskopy i instrumenty nanotekhnologii na ikh osnove. Rukovodstvo pol'zovatelya SolverP47 [Scanning probe microscopes and nanotechnology instruments based on them. SolverP47 User Manual]. – Access mode: www.url: http://www.nt-mdt.ru. – 17.08.2021. (In Russian).
11. Makroyazyk «Nova PowerScript». Spravochnoe rukovodstvo [Macrolanguage «Nova PowerScript». Manual guide]. Мoscow: ZAO «Nanotekhnologiya-MDT» Publ., 2008. 86 p. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒