Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Fractal analysis of the maze-like domain structure of ferrite-garnet films in the process of magnetization

A.D. Zigert, G.G. Dunaeva, N.Yu. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2021.13.134

Original article

Abstract: In this work, using a set of experimental techniques and specialized software, magnetic bismuth-containing ferrite-garnet films grown on gadolinium-gallium garnet substrates are investigated. The limiting magnetic hysteresis loops are obtained by the method of optical magnetometry for defective and defect-free areas of bismuth-containing ferrite-garnet films. It was found that, far from defects, the loop exhibits a non-coercive behavior within the error limits. For the case of magnetization reversal, a coercive state with HcI ~ 1Oe appears near the defect. For different sections of the limiting magnetic hysteresis loop, the fractal dimension is determined. The obtained values are in the range of DL=1,35÷1,46 for an arbitrary section of the film and DL=1,37÷1,54 for a section with defects. Typical morphological characteristics of the surface of a bismuth-containing ferrite-garnet film have been determined. The results obtained make it possible to predict the relationship between the value of magnetization and the value of fractal dimension for epitaxial bismuth-containing magnetic films of iron garnet.

Keywords: magnetic films, ferrite garnets, bulk defects, domain structure, coercivity, fractal dimension, nanorelief

  • Alexandr D. Zigert – Senior Lecturer, Applied Physics Department, Tver State University
  • Galina G. Dunaeva – 2nd year master's degree student, Condensed Matter Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Zigert, A.D. Fractal analysis of the maze-like domain structure of ferrite-garnet films in the process of magnetization / A.D. Zigert, G.G. Dunaeva, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 134-145. DOI: 10.26456/pcascnn/2021.13.134. (In Russian).

Full article (in Russian): download PDF file

References:

1. Harp G.R., Parkin S.S.P. Epitaxial growth of metals by sputter deposition, Thin Solid Films, 1996, vol. 288, issue 1-2, pp. 315-324. DOI: 10.1016/S0040-6090(96)08808-6.
2. Zvezdin А.К., Kotov V.A. Modern magnetooptics and magnetooptical materials. New York, Taylor & Francis Croup, 1997, 404 p.
3. Scheunert G., Heinonen O., Hardeman R. et al. A review of high magnetic moment thin films for microscale and nanotechnology applications, Applied Physics Reviews, 2016, vol. 3, issue 1, pp. 011301-1-011301-44. DOI: 10.1063/1.4941311.
4. Herzer G. Magnetization process in nanocrystalline ferromagnets, Materials Science and Engineering: A, 1991, vol. 133, pp. 1-5. DOI: 10.1016/0921-5093(91)90003-6.
5. Iskhakov R.S., Komogortsev S.V. Magnetic microstructure of amorphous, nanocrystalline, and nanophase ferromagnets, The Physics of Metals and Metallography, 2011, vol. 112, issue 7, pp. 666-681. DOI: 10.1134/S0031918X11070064.
6. Kim D.-H., Cho Y.-C., Choe S.-B., Shin S.-C. Correlation between fractal dimension and reversal behavior of magnetic domain in / Co Pd nanomultilayers, Applied Physics Letters, 2003, vol. 82, no. 21, pp. 3698-3700. DOI: 10.1063/1.1578185.
7. Komogortsev S.V., Iskhakov R.S., Fel’k V.A. Fractal dimension effect on the magnetization curves of exchange-coupled clusters of magnetic nanoparticles, Journal of Experimental and Theoretical Physics, 2019, vol. 128, issue 5, pp. 754-760. DOI: 10.1134/S1063776119040095.
8. Polyakova O.P., Akimova M.L., Polyakova P.A. Remagnetization of a fractal magnetic structure, Bulletin of the Russian Academy of Sciences: Physics, 2020, vol. 84, issue 2, pp. 166-168. DOI: 10.3103/S106287382002029X.
9. Ivanova A.I., Semenova E.M., Dunaeva G.G., Ovcharenko S.V., Tretyakov S.A., Zigert A.D. Vliyanie defektov na magnitnye kharakteristiki ferrit-granatovykh plenok [Influence of defects on magnetic characteristics of ferrite-garnet films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 103-112. DOI: 10.26456/pcascnn/2020.12.103. (In Russian).
10. Khmelevskaya V.S., Kulikova N.V., Bondarenko V.V. Fractal structures formed in metals irradiated by ion and laser beams, Technical Physics Letters, 2005, vol. 31, issue 7, pp. 619-621. DOI: 10.1134/1.2001073.
11. Lisovskii F.V., Lukashenko L.I., Mansvetova E.G. Thermodynamically stable fractal-like domain structures in magnetic films, Journal of Experimental and Theoretical Physics Letters, 2004, vol.79, issue 7, pp. 352-354. DOI: 10.1134/1.1765181.
12. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverkhnosti [Fractal geometric microsurface model], Geometriya i grafika [Geometry & Graphics], 2016, vol. 4, no. 1, pp. 4-11. DOI: 10.12737/18053. (In Russian).
13. Brylkin Yu.V., Kusov A.L., Florov A.V. Testirovanie algoritma modelirovaniya rel'efa sherokhovatoj poverkhnosti na osnove teorii fraktalov [Testing a rough surface relief modeling algorithm based on fractal theory, Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta], [Proceedings of the Kabardino-Balkarian State University], 2014, vol. IV, no. 5, pp. 86-89. (In Russian).
14. Otsu N. A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 1979, vol. 9, issue 1, pp. 62-66. DOI: 10.1109/TSMC.1979.4310076.
15. DigitalSurf. Available at: www.url: https://www.digitalsurf.com (accessed 15.08.2021).
16. Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software. Available at: www.url: http://gwyddion.net (accessed 15.09.2021).
17. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver, Tver State University Publ., 2019, 168 p. (In Russian).
18. Semenova E.M., Lyakhova M.B., Kuznetsova Yu.V. et al. A comparative analysis of magnetic properties and microstructure of high coercivity Sm(CoCuFe)5 quasi-binary alloys in the framework of fractal geometry, Journal of Physics: Conference Series, 2020, vol. 1658, art. no. 012050, 6 p. DOI: 10.1088/1742-6596/1658/1/012050.
19. Semenova E.M., Ivanov D.V., Lyakhova M.B. et al. Fractal geometry of the nano- and magnetic domain structures of Sm-Co-Cu-Fe ferromagnetic alloy in a high coercive state, Bulletin of the Russian Academy of Sciences: Physics, 2021, vol. 85, issue 9, pp. 955-958. DOI: 10.3103/S1062873821090252.
20. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Determination of the fractal size of titanium films at different scales, Journal of Physics: Conference Series, 2021, vol. 1758, art. no. 012013, 6 p. DOI: 10.1088/1742-6596/1758/1/012013.
21. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 473-486. (In Russian).
22. Han B.-S., Li D., Zheng D.-J., Zhou Y. Fractal study of magnetic domain patterns, Physical Review B, 2002, vol. 66, issue 1, pp. 014433-1-014433-5. DOI: 10.1103/PhysRevB.66.014433.
23. Dovbnya L.A., Naumov D.E., Khramov B.V. Fractal model of magnetization reversal in a strained garnet ferrite film, Journal of Experimental and Theoretical Physics Letters, 2001, vol. 73, issue 7, pp. 366-369. DOI: 10.1134/1.1378121.
24. Bathany C., Romancer M.L., Armstrong J.N., Chopra H.D. Morphogenesis of maze-like magnetic domains, Physical Review B, 2010, vol. 82, issue 18, pp. 184411-1-184411-14. DOI: 10.1103/PhysRevB.82.184411. DOI: 10.1103/PhysRevB.82.184411.

⇐ Prevoius journal article | Content | Next journal article ⇒