Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Formation of a novel diamond-like bilayer based on 5-7 graphene

V.A. Greshnyakov, E.A. Belenkov

Chelyabinsk State University

DOI: 10.26456/pcascnn/2021.13.076

Original article

Abstract: First-principle calculations of the structure and properties of orthorhombic L5-7  graphene and a novel diamond-like bilayer formed on its basis are performed. The calculations using the density functional theory method showed that L5-7 graphene of Stone-Wales defects should exist stably under normal conditions, and its structure should be corrugated in a wave-like manner. Under strong uniaxial compression of bilayer L5-7  graphene, the formation of the novel diamond-like DL5-7 bilayer can occur. The pressure of the «L5-7 → DL5-7» phase transition is 10,1 GPa, when the interlayer distance in bilayer graphene decreases to 1,61 Å. This bilayer has an orthorhombic crystal lattice (pbam) with the parameters a=10,145 Å and b=5,270 Å. The unit cell of the DL5-7 pbam bilayer contains 32 carbon atoms. The bond lengths vary in the range from 1,5590 to 1,6226 Å, while the angles between these bonds range from 89,62 to 140,8 °. The structure of the diamond-like bilayer should be stable up to 270 K. The calculated values of the surface density and the difference total energy of this bilayer relative to the diamond total energy are 1,19·105 g/cm2 and 1,31 eV/atom, respectively. The DL5-7 pbam bilayer should be a semiconductor with a straight bandgap of 1,63 eV.

Keywords: graphene, topological defects, diamond-like layer, ab initio calculations, crystal structure

  • Vladimir A. Greshnyakov – Ph. D., Assistant Professor, Condensed Matter Physics Department, Chelyabinsk State University
  • Evgeny A. Belenkov – Dr. Sc., Full Professor, Condensed Matter Physics Department, Chelyabinsk State University

Reference:

Greshnyakov, V.A. Formation of a novel diamond-like bilayer based on 5-7 graphene / V.A. Greshnyakov, E.A. Belenkov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 76-84. DOI: 10.26456/pcascnn/2021.13.076. (In Russian).

Full article (in Russian): download PDF file

References:

1. Geim A.K., Novoselov K.S. The rise of graphene, Nature Materials, 2007, vol. 6, issue 3, pp. 183-191. DOI: 10.1038/nmat1849.
2. Ivanovskii A.L. Graphene-based and graphene-like materials, Russian Chemical Reviews, 2012, vol. 81, issue 7, pp. 571-605. DOI: 10.1070/RC2012v081n07ABEH004302.
3. Babicheva R.I., Dmitriev S.V., Korznikova E.A., Zhou K. Mechanical properties of two dimensional sp2 - carbon nanomaterials, Journal of Experimental and Theoretical Physics, 2019, vol. 129, issue 1, pp. 66-71. DOI: 10.1134/S1063776119070021.
4. Belenkov E.A., Greshnyakov V.A. Structure, properties, and possible mechanisms of formation of diamond-like phases, Physics of the Solid State, 2016, vol. 58, issue 10, pp.2145-2154. DOI: 10.1134/S1063783416100073.
5. Zhai J., Wan A., Wu W. A review on the structure of cold-compressed graphite phase, Modern Physics Letters B, 2015, vol. 29, no. supplement 1, pp. 1530011-1-1530011-16. DOI: 10.1142/S0217984915300112.
6. Bundy F.P., Bassett W.A., Weathers M.S. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994, Carbon, 1996, vol. 34, issue 2, pp. 141-153. DOI: 10.1016/0008-6223(96)00170-4.
7. Greshnyakov V.A., Belenkov E.A. Investigation on the formation of lonsdaleite from graphite, Journal of Experimental and Theoretical Physics, 2017, vol. 124, issue 2, pp. 265-274. DOI: 10.1134/S1063776117010125.
8. Baimova J.A., Rysaeva L.K. Deformation behavior of three-dimensional carbon structures under hydrostatic compression, Journal of Structural Chemistry, 2018, vol. 59, issue 4, pp. 884-890. DOI: 10.1134/S0022476618040200.
9. Geng P., Branicio P.S. Atomistic insights on the pressure-induced multi-layer graphene to diamond-like structure transformation, Carbon, 2021, vol. 175, pp. 243-253. DOI: 10.1016/j.carbon.2021.01.007.
10. Belenkov E.A., Greshnyakov V.A. Classification of structural modifications of carbon, Physics of the Solid State, 2013, vol. 55, issue 8, pp. 1754-1764. DOI: 10.1134/S1063783413080039.
11. Ohno K., Satoh H., Iwamoto T., Tokoyama H., Yamakado H. Exploration of carbon allotropes with four-membered ring structures on quantum chemical potential energy surfaces, Journal of Computational Chemistry, 2019, vol. 40, issue 1, pp. 14-28. DOI: 10.1002/jcc.25556.
12. Greshnyakov V.A., Belenkov E.A. Struktura i ustoichivost’ tetragonal’nogo almazopodobnogo sloya: pervoprintsipnyye raschety [Structure and stability of a tetragonal diamond-like layer: first-principle calculations], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 12, pp. 405-414. DOI: 10.26456/pcascnn/2020.12.405. (In Russian).
13. Greshnyakov V.A., Belenkov E.A. Teoreticheskoe issledovanie ustojchivosti i sposobov polucheniya sloevykh almazopodobnykh nanostruktur [Theoretical study of the stability and formation methods of layer diamond-like nanostructures], Pis'ma o materialakh [Letters on Materials], 2020, vol. 10, issue 4, pp. 457-462. DOI: 10.22226/2410-3535-2020-4-457-462. (In Russian).
14. Deza M., Fowler P.W., Shtogrin M., Vietze K. Pentaheptite modifications of the graphite sheet, Journal of Chemical Information and Computer Sciences, 2000, vol. 40, issue 6, pp. 1325-1332. DOI: 10.1021/ci000010j.
15. Giannozzi P., Baroni S., Bonini N. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 2009, vol. 21, no. 39, pp. 395502-1-395502-19. DOI: 10.1088/0953-8984/21/39/395502.
16. Hohenberg P., Kohn W. Inhomogeneous electron gas, Physical Review, 1964, vol. 136, issue 3B, pp. B864-B871. DOI: 10.1103/physrev.136.b864.
17. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple, Physical Review Letters, 1996, vol. 77, issue 18, pp. 3865-3868. DOI:10.1103/physrevlett.77.3865.
18. Belenkov E.A., Greshnyakov V.A. Modeling of phase transitions of graphites to diamond-like phases, Physics of the Solid State, 2018, vol. 60, issue 7, pp. 1294-1302. DOI: 10.1134/S1063783418070065.
19. Pierson H.O. Handbook of carbon, graphite, diamond, and fullerenes: Properties, processing and applications. . – Park Ridge, New Jersey: Noyes Publications, 1994, 419 p.
20. Greshnyakov V.A., Belenkov E.A. Ab initio calculations of carbon bilayers with diamond-like structures, Journal of Structural Chemistry, 2020, vol. 61, issue 6, pp. 835-843. DOI: 10.1134/S0022476620060013.
21. Eaton, P.E. Or Y.S., Branca S.J. Pentaprismane, Journal of the American Chemical Society, 1981, vol. 103, issue 8, pp. 2134-2136. DOI: 10.1021/ja00398a062.
22. Zhou Y., Chen X., Liu S.-L., Gan L.-H. Three new tetragonal superhard 3 sp carbon allotropes, Solid State Communications, 2020, vol. 323, art. no. 114095,10 p. DOI: 10.1016/j.ssc.2020.114095.

⇐ Prevoius journal article | Content | Next journal article ⇒