Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Viscometry of nanodisperse magnetic liquids and lubricating oils. 1. Instrumentation for rheological studies of magnetic nanodisperse liquid media

A.N. Bolotov, O.O. Novikova

Tver State Technical University

DOI: 10.26456/pcascnn/2021.13.044

Original article

Abstract: Analysis of the literature sources shows that the existing viscometers are not always and not completely able to provide comprehensive studies of magnetic nanofluids for scientific and practical purposes. Design has been developed of a magnetic rotary viscometer which makes it possible to carry out investigations in a wide range of the magnetic field induction. The magnetic field in the device is directed orthogonally to the shear stress and can vary from zero to 1,7·105  A/m. The device has two measuring gaps filled with liquid, that increases the accuracy of the results of studies of low-viscosity liquids. The viscometer allows you to measure the standard characteristics of magnetic nanofluids (viscosity coefficient, plastic viscosity, ultimate shear stress, etc.), as well as to study the structural features of liquids under shear stresses. The shear rate in the liquid can be stably maintained in a wide range of  (1÷5) ·103 s-1. The viscosity of the studied liquids can vary from 10-3 Pa·s to ≈ 102 Pa·s. For studies on a viscometer, a small amount of magnetic nanofluid with a volume of about 3,5 cm3 is required. Using experimental data, the mathematical description of the process of laminar fluid flow in the annular gap of the viscometer made it possible to optimize its geometric dimensions and obtain formulas for calculating the viscosity coefficient, shear stress and shear rate.

Keywords: magnetic nanofluid, rheology, coaxial viscometer, shear stress, shear rate, coefficient of viscosity, magnetic field, external and internal friction

  • Alexander N. Bolotov – Dr. Sc., Professor, Head of the Applied Physics Department, Tver State Technical University
  • Olga O. Novikova – Ph. D., Full Docent, Applied Physics Department, Tver State Technical University

Reference:

Bolotov, A.N. Viscometry of nanodisperse magnetic liquids and lubricating oils. 1. Instrumentation for rheological studies of magnetic nanodisperse liquid media / A.N. Bolotov, O.O. Novikova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 44-55. DOI: 10.26456/pcascnn/2021.13.044. (In Russian).

Full article (in Russian): download PDF file

References:

1. Fertman V.Е. Magnitnye zhidkosti: Spravochnoe posobie [Magnetic liquids: A reference guide]. Minsk, Vysshaya shkola Publ., 1988, 184 p. (In Russian).
2. Bolotov A.N., Novikova O.O., Novikov V.V. Magnitnye siloksanovye nanozhidkosti adaptirovannye dlya uslovij granichnogo treniya [Silicone magnetic nanofluids adapted for the conditions of boundary friction], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 546-556. DOI: 10.26456/pcascnn/2020.12.546. (In Russian).
3. Bolotov A.N., Novikova O.O. Mobil'nyj magnitometr dlya ekspress-testa namagnichennosti nasyshcheniya magnitnykh nanozhidkostej [Mobile magnetometer for rapid test of saturation magnetization of magnetic nanofluids], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 557-570. DOI: 10.26456/pcascnn/2020.12.557. (In Russian).
4. Uhlmann E., Spur G., Bayat N., Patzwald R. Application of magnetic fluids in tribotechnical systems, Journal of Magnetism and Magnetic Materials, 2002, vol. 252, pp. 336-340. DOI: 10.1016/S0304-8853(02)00724-2.
5. Belkin I.М., Vinogradov G.V., Leonov A.I. Rotatsionnye pribory: Izmerenie vyazkosti i fiz.-mekhan. kharakteristik materialov [Rotary instruments: Viscosity, physical and mechanical characteristics measurement of materials]. Moscow, Mashinostroenie Publ., 1968. 272 p. (In Russian).
6. Schramm G. A practical approach to rheology and rheometry. Karlsruhe, Gebrueder HAAKE GmbH, 1994, 290 p.
7. Kolchanov N.V., Kolesnichenko Е.V. Vyazkost' magnitnyh zhidkostej pri razlichnyh koncentraciyah kolloidnyh chastic i temperaturah [Viscosity of magnetic fluids at various concentrations of colloidal particles and temperatures], Vestnik Permskogo universiteta. Fizika [Bulletin of the Perm University. Physics], 2017, no. 4 (38), pp. 37-44. DOI: 10.17072/1994-3598-2017-4-37-44. (In Russian).
8. Patel R., Upadhyay R.V., Mehta R.V. Viscosity measurements of a ferrofluid: comparison with various hydrodynamic equations, Journal of Colloid and Interface Science, 2003, vol. 263, issue 2, pp. 661-664. DOI: 10.1016/S0021-9797(03)00325-4.
9. Allebrandi S.M., van Ostayen R.A.J., Lampaert S.G.E Capillary rheometer for magnetic fluids, Journal of Micromechanics and Microengineering, 2020, vol. 30, no. 1, art. no. 015002, 14 p. DOI: 10.1088/1361-6439/ab3f4c.
10. Sizov А.P., Balashov O.Yu., Sergeev E.V. Razrabotka konstrukcii viskozimetra dlya issledovaniya magnitnyh zhidkostej [Viscometer design for magnetic liquids research], Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta [Vestnik of Ivanovo State Power Engineering University], 2012, issue 6. pp. 37-40. (In Russian).
11. Laun H.M., Kormann C., Willenbacher N. Rheometry on magnetorheological (MR) fluids, Rheola Acta, 1996, vol. 35, issue 5, pp. 417-432. DOI: 10.1007/BF00368993.
12. Emelyanov S.G., Polunin V.M., Kobelev N.S., Ryapolov P.A., Shabanova I.A. Sposob opredeleniya vyazkosti magnitnoj zhidkosti ili magnitnogo kolloida [Method for determining the viscosity of a magnetic liquid or magnetic colloid]. Patent RF, no. 2416089, 2011. (In Russian).
13. Bacri J.-C., Dumas J., Gorse D., Perzynski R., Salin D. Ferrofluid viscometer, Journal de Physique Lettres, 1985, vol. 46, no. 24, pp. 1199-1205. DOI: 10.1051/jphyslet:0198500460240119900.
14. Pashnin S.V., Sukhodoev E.E. Izmerenie dinamicheskoi vyazkosti neprozrachnoi zhidkosti metodom Stoksa [Measurement of the dynamic viscosity of an opaque liquid by the Stokes method], Evrazijskoe Nauchnoe Ob"edinenie [Eurasian Scientific Association], 2019, no. 6-2 (52), pp. 98-101. (In Russian).
15. Wang S., Yang C., Bian X. Magnetoviscous properties of 3 4 Fe O silicon oil based ferrofluid, Journal of Magnetism and Magnetic Materials, 2012, vol. 324, issue 20, pp. 3361-3365. DOI: 10.1016/j.jmmm.2012.05.055.
16. Laun M., Pfister J., Lochtman R., Oetter G., Gabriel C. Rheometer. Patent United States, no. US 8,132.445 B2, 2012.
17. Polunin V.М., Ryapolov P.A., Zhakin A.I., Sheldeshova E.V. Izmerenie dinamicheskoj vyazkosti neprozrachnoj zhidkosti metodom Stoksa [Viscosity of a magnetic fluid in a strong magnetic field], Akusticheskij zhurnal [Acoustical Physics], 2019, vol. 65, no. 4, pp. 477-483. DOI: 10.1134/S0320791919040142. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒