Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный университет»

ФИЗИКО-ХИМИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ КЛАСТЕРОВ, НАНОСТРУКТУР И НАНОМАТЕРИАЛОВ

PHYSICAL AND CHEMICAL ASPECTS OF THE STUDY OF CLUSTERS, NANOSTRUCTURES AND NANOMATERIALS

FIZIKO-HIMIČESKIE ASPEKTY IZUČENIÂ KLASTEROV, NANOSTRUKTUR I NANOMATERIALOV

МЕЖВУЗОВСКИЙ СБОРНИК НАУЧНЫХ ТРУДОВ

выпуск 11

ТВЕРЬ 2019

УДК 620.22:544+621.3.049.77+539.216.2:537.311.322: 530.145 ББК Ж36:Г5+В379 Ф50

Рецензирование статей осуществляется на основании Положения о рецензировании статей и материалов для опубликования в Межвузовском сборнике научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов».

Официальный сайт издания в сети Интернет: https://www.physchemaspects.ru

Ф50 Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов [Текст]. – Тверь: Твер. гос. ун-т, 2019. – Вып. 11. – 680 с.

Зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций, свидетельство о регистрации СМИ ПИ № ФС 7747789 от 13.12.2011.

Издание составлено из оригинальных статей, кратких сообщений и обзоров теоретического и экспериментального характера, отражающих физико-химических результаты исследований области изучения В процессов с участием кластеров, наноструктур и наноматериалов физики, межфазные явления нанотермодинамику. Сборник включая И работников, инженерно-технических предназначен для научных И преподавателей ВУЗов, студентов и аспирантов. Издание подготовлено на кафедре общей физики Тверского государственного университета.

Переводное название: Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials

Транслитерация названия: Fiziko-himičeskie aspekty izučeniâ klasterov, nanostruktur i nanomaterialov

УДК 620.22:544+621.3.049.77+539.216.2:537.311.322: 530.145 ББК Ж36:Г5+В379

Print ISSN 2226-4442 Online ISSN 2658-4360

© Коллектив авторов, 2019

© Тверской государственный университет, 2019

УДК 34.882.4.536.361 Оригинальная статья ВЛИЯНИЕ БОРА НА СТРУКТУРНЫЕ ОСОБЕННОСТИ И ФОТОРЕФРАКТИВНЫЕ СВОЙСТВА МОНОКРИСТАЛЛОВ LiNbO₃

Н.В. Сидоров, Н.А. Теплякова, Р.А. Титов, М.Н. Палатников Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение ФГБУН Федерального исследовательского центра «Кольский научный центр Российской академии наук» 184209, Россия, Мурманская область, Апатиты, Академгородок, 26a

r.titov@ksc.ru

DOI: 10.26456/pcascnn/2019.11.223 Аннотация: Выполнен анализ исследований монокристаллов $LiNbO_3$ стех, $LiNbO_3$ конг и $LiNbO_3$: B (0,83 мол.% B_2O_3 в шихте). Установлено, что бор, присутствующий в расплаве, не входит в структуру кристалла $LiNbO_3$ и, связывая в процессе комплексообразования избыточный в расплаве конгруэнтного состава ниобий, приближает по величине друг к другу эффективные коэффициенты распределения лития и ниобия. При этом кристалл $LiNbO_3$: B по упорядочению структурных единиц приближается к стехиометрическому кристаллу.

Ключевые слова: монокристалл, ниобат лития, фотоэлектрические поля, бор, легирование, структурирование расплава.

1. Введение

Проблема стехиометрии является наиболее распространенной как в оксидах ниобия, так и во многих различных ниобатах, где октаэдры NbO₆ являются основными структурными единицами [1]. На сегодняшний день актуально получение кристаллов ниобата лития стехиометрического состава и близких к нему с целью создания оптических материалов для лазерных сред, поскольку они имеют ряд существенных преимуществ по сравнению с кристаллами конгрузнтного состава. Одним из негативных свойств кристалла ниобата лития является эффект фоторефракции, который заключается в искажении фронта электромагнитной волны, монокристалл. Фоторефрактивный проходящей через эффект электрооптических диэлектрических материалах можно варьировать путём их легирования катионами металлов с постоянной валентностью. При легировании In, Zn или Mg фоторефрактивный отклик ниобата лития практически исчезает [2]. Композиционная однородность кристаллов *LiNbO*₃ зависит от способа выращивания и состава исходной шихты. Состав шихты перестаёт соответствовать составу конгруэнтного плавления при введении в неё легирующего компонента. Это приводит к изменению термодинамических характеристик расплава И, соответственно, разнообразия фронта увеличению ионных комплексов вблизи кристаллизации [3].

В процессе кристаллизации изменяется объём и состав расплава, и в

случае отличных OT единицы коэффициентов распределения (k₀) происходит снижение концентрации ионных комплексов, способных кристалл с постоянной концентрацией образовывать легирующего Таким образом, компонента. легированные кристаллы LiNbO₃ пониженным эффектом фоторефракции можно вырастить из расплава методом Чохральского с равномерным распределением примеси вдоль оси роста кристалла только при кристаллизации строго определённой части расплава.

Выращивание легированных кристаллов ниобата лития, согласно фазовой диаграммы [4], осуществляется из расплава особенностям конгруэнтного состава, который обеднён по литию. Это становится причиной существенного изменения вторичной структуры выращенного монокристалла, поскольку дефицит лития в расплаве способствует образованию в кристалле основных структурных дефектов - катионов ниобия, занимающих позиции лития (*Nb*₁) и возникающих в рамках зарядовой компенсации вакансий в литиевых позициях (V₁). Результаты, работе [5], полученные В демонстрируют, что концентрация неметаллической примеси, оказывающей значительное влияние на свойства ниобата лития [5, 6], может быть на порядки ниже концентрации металлических примесей (коэффициент вхождения бора в структуру кристалла *LiNbO*₃ <<1 [6]).

2. Постановка задачи

B данной работе предпринята попытка объяснить причины повышенного упорядочения структурных единиц катионной подрешётки и сопротивление повреждению оптическим излучением повышенное кристалла LiNbO₃, выращенного методом Чохральского из конгрузнтной шихты, легированной бором. Результаты исследований сравнивались с результатами, полученными для номинально чистых конгрузнтного *LiNbO*_{3 конг} и стехиометрического *LiNbO*_{3 стех} кристаллов. Кристалл *LiNbO*_{3 стех} был выращен из расплава с содержанием $Li_2O \approx 58,6$ мол.%. Кристалл LiNbO₃: В (0,83 мол.% В₂O₃ в шихте) был выращен из шихты, полученной методом твердофазного легирования [5, 6].

3. Результаты и обсуждение

Большинство оксидных расплавов демонстрируют электропроводность, что предполагает присутствие в расплаве заряженных комплексов. В работе [7] показан большой спектр разнообразных ионных комплексов, существующих в номинально чистом расплаве ниобата лития конгруэнтного состава. Диссоциация $LiNbO_3$ в расплаве протекает с образованием Li^+, OLi^- , $Nb_2O_4V^{2+}$ и O^{2-} , соответственно [7]. Концентрация этих ионных комплексов зависит от состава и температуры расплава. Очевидно, что состав и структура комплексов усложняется при появлении в смеси бора с ярко выраженной комплексообразующей способностью.

Как известно, температура Кюри T_c варьируется с изменением стехиометрии и концентрации легирующей примеси [8, 9]. В Таблице 1 представлен расчёт концентрации Li_2O в монокристаллах ниобата лития с учётом температуры Кюри, а так же расчёт концентрации дефектов Nb_{Li} по формулам, выведенным согласно экспериментальным данным ряда авторов [8-10].

Таблица 1. Расчёт концентрации Li_2O ([Li_2O], мол.%) и дефектов Nb_{Li} ([Nb_{Li}], мол.%) в кристаллах $LiNbO_{3 \text{ конг}}$ и $LiNbO_{3}$: В (0,83 мол.% B_2O_3 в шихте) на основе T_C

Формулы для расчёта концентрации Li ₂ O и		$LiNbO_{3 \text{ конг}}$	$LiNbO_3: B$	
дефектов <i>Nb_{Li}</i> , приведенные в [8-10]	T_c , °C	1145	1189	
$T_C = -637, 30 + 36, 70 \cdot C(Li_2O) $ [8]		48,56	49,76	
$T_{C} = 9095, 2 - 369, 05 \cdot C(Li_{2}O) + 1, 228 \cdot C^{2}(Li_{2}O) $ [8]	[I] O]	48,57	49,54	
$T_c = -442,77 + 32,617 \cdot C(Li_2O) \ [9]$	$[Ll_2O]$	48,68	50,03	
$T_{C} = -11328 + 477, 77 \cdot C(Li_{2}O) - 4,551 \cdot C^{2}(Li_{2}O) $ [9]		48,68	50,28	
$T_{C} = 3,7827 \cdot C^{2}(Nb_{Li}) - 49,47 \cdot C(Nb_{Li}) + 1186,6 $ [10]	$[Nb_{Li}]$	0,9	0	

На основе данных, приведенных в Таблице 1, можно заключить, что с появлением бора в шихте наблюдается увеличение содержания Li₂O в $LiNbO_3$. кристалле Классическое определение стехиометрической подразумевает необходимость кристалла выполнения структуры чередования Li, Nb и вакантного октаэдра с одновременным условием сохранения отношения Li/Nb = 1. Приближение структуры кристалла LiNbO3: В к стехиометрической подтверждают данные спектроскопии света (KPC), комбинационного рассеяния свидетельствующие об изменении порядка чередования основных, легирующих катионов и вакансий вдоль полярной оси кристалла [5]. При этом происходит уменьшение ширин линий в спектре КРС кристалла *LiNbO*₃: В ПО сравнению с кристаллом *LiNbO*_{3 конг}.

Единственной кристаллизующейся фазой в системе $Li_2O - Nb_2O_5 - B_2O_3$ является $LiNbO_3$, поскольку фаза $LiNbO_3$ не имеет области растворимости бора в твёрдом состоянии [3]. При этом, соединения бора могут быть использованы в качестве флюса и определенным образом структурировать

225

расплав, изменяя его физико-химические характеристики [11]. При сравнении расплавов конгруэнтного состава и легированного бором, последний обладает иными структурой, размером и электрохимической активностью кластеров, что при прочих равных условиях оказывает влияние на вторичную структуру выращенного монокристалла $LiNbO_3: B$. При этом кристалл, выращенный из такого расплава с измененной структурой (при сравнительно малой концентрации бора) обладает более высокой оптической и структурной однородностью по сравнению с номинально чистым кристаллом *LiNbO*_{3 конг} [6]. Можно предположить, что борсодержащие полианионы, образуя устойчивые в расплаве ковалентные связи с ниобийсодержащими полианионами, связывая избыток ниобия, увеличивают соотношение Li/Nb в расплаве, выравнивая при этом значения k_0 лития и ниобия, в результате чего выращенный кристалл приближается к стехиометрическому кристаллу по степени упорядочения катионной подрешетки так же, как это происходит при использовании флюса K_2O [4]. Такой кристалл характеризуется пониженным содержанием дефектов Nb_{Ii} , и, как следствие, литиевых вакансий V_{Ii} (см. данные Таблицы 1).

Высокую оптическую однородность исследованных в данной работе кристаллов подтверждают коноскопические картины (см. рис. 1). Для кристалла $LiNbO_3:B$ (0,83 мол.% B_2O_3 в шихте) при мощности лазерного излучения 1 мВт на коноскопической картине наблюдается близкий к идеальному мальтийский крест, чего нельзя сказать о кристаллах $LiNbO_3$ конг и $LiNbO_3$ стех. Для кристалла $LiNbO_3$ стех наблюдается значительное размытие коноскопических картин как при малой, так и при большой мощности лазерного излучения, указывающее на значительную оптическую неоднородность вдоль оси роста кристалла $LiNbO_3$ стех (см. рис. 1).

большей При мощности лазерного излучения (90 мВт) на коноскопической картине наблюдаются незначительные признаки аномальной оптической двуосности, связанные, вероятно, с увеличением эффекта фоторефракции (незначительное вытягивание «мальтийского креста» в горизонтальном направлении, углы между его ветвями отличны от 90°), (см. рис. 1). Стоит отметить, что эффект фоторефракции в стехиометрическом кристалле существенно больше, чем в конгруэнтном и $LiNbO_3: B$ (0,83 мол.% B_2O_3 в шихте). Сравнительный в кристалле коноскопический анализ исследованных кристаллов при использовании лазерного излучения мощностью 1 и 90 мВт, а также исследование методом фотоиндуцированного рассеяния света (ФИРС) позволяют сделать вывод о том, что оптическая однородность кристалла LiNbO3: В

сравнима с таковой для кристалла *LiNbO*_{3 конг} и значительно выше оптической однородности кристалла *LiNbO*_{3 стех} (см. рис. 1).

Рис. 1. Спекл-структура индикатрисы ФИРС (P = 160 мBT) и коноскопические картины (P = 1 и 90 мВт) кристаллов *LiNbO*_{3 стех} (1), *LiNbO*_{3 конг} (2) и *LiNbO*₃ : *B* (0,83 мол.% B_2O_3 в шихте) (3).

Кристалл $LiNbO_3$: В (0,83 мол.% B_2O_3 в шихте) по степени упорядочения структурных единиц катионной подрешетки и содержанию точечных дефектов (Nb_{Li} , V_{Li}) занимает промежуточное положение между конгруэнтным и стехиометрическим кристаллами [5, 6].

Кроме глубоких ловушек электронов, создаваемых точечными фоторефрактивными центрами (главным образом, дефектами Nb_{Li}), в кристалле $LiNbO_3$ существует множество мелких ловушек электронов, влияющих на эффект фоторефракции [4, 12], количество которых зависит от отношения Li/Nb.

Преимущественным механизмом фоторефракции в кристалле $LiNbO_3$ является фотовольтаический, т.е. значение величины фотовольтаического поля E_{pv} значительно больше значения величины диффузионного поля E_D [12]. Полученные данные свидетельствуют и о том, что в кристалле $LiNbO_3$ стех сильнее, чем в других кристаллах, проявляется диффузионный механизм переноса заряда, что характерно для кристаллов с большим количеством мелких ловушек электронов (см. Таблицу 2).

Таблица 2. Напряжённости фотовольтаического и диффузионного полей для кристаллов $LiNbO_3$ стех, $LiNbO_3$ конг и $LiNbO_3$: *B* при $\lambda = 476,5$; 488,0; 514,5 и 532,0 нм

	476,5 нм		488,0 нм		514,5 нм		532,0 нм	
Кристалл	E_{pv} ,	E_D ,						
	В/см	В/см	В/см	В/см	В/см	В/см	В/см	В/см
LiNbO _{3 crex}	3907	923	2979	895	6855	2508	4055	1749
$LiNbO_{3 КOHF}$	4326	249	3549	198	6232	810	5003	52
<i>LiNbO</i> ₃ : <i>B</i> (0,83 мол.% <i>B</i> ₂ <i>O</i> ₃ в шихте)	5061	397	5840	929	7844	1099	5554	25

Для всех исследованных кристаллов вне зависимости от длинны волны возбуждающего излучения наблюдается максимум в значении Е_т Е_р, (см. Таблицу 2). При сравнении значений по сравнению с фотовольтаического поля кристалла LiNbO3 конг и кристалла, выращенного из шихты с содержанием 0,83 мол. B_2O_3 , значения E_{nv} при длине волны возбуждающего излучения 532,0 нм различаются незначительно: 5003 и 5554 В/см, соответственно. Значения Е_р данных кристаллов очень близки: 52 и 25 В/см, соответственно. В то же время, кристалл LiNbO_{3 стех} характеризуется значением наибольшим лиффузионного поля ИЗ представленных – 1749 В/см. Таким образом, можно заключить, что количество мелких электронных ловушек в кристаллах LiNbO_{3 конг} и LiNbO₃: В минимально и находится приблизительно на одном уровне, в отличие от кристалла стехиометрического состава. При этом если в кристаллах *LiNbO*_{3 конг} и *LiNbO*₃: В наибольший вклад в фоторефрактивный эффект вносит фотовольтаический механизм, то в кристалле LiNbO3 стех превалирует диффузионный механизм переноса заряда.

4. Заключение

Легирующая добавка бора, не входя в структуру кристалла,

228

способствует увеличению упорядочения основных, легирующих катионов и вакансий вдоль полярной оси выращенного кристалла. Бор, будучи сильным комплексообразующим агентом, структурирует расплав и связывает избыточный ниобий, выравнивая тем самым k₀ лития и ниобия, что снижает количество дефектов Nb₁. Это приводит к упорядочению структурных единиц катионной подрешетки кристалла LiNbO₃: В И приближает его к кристаллу стехиометрического состава. Кроме того, как активная комплексообразующая добавка химически бор снижает содержание неконтролируемых металлических примесей [6], тем самым дополнительно понижая эффект фоторефракции в $LiNbO_3$: B.

Работа выполнена при финансовой поддержке РФФИ (проект № 19-33-90025).

Библиографический список:

1. **Nico, C.** Niobium oxides and niobates physical properties: Review and prospects / C. Nico, T. Monteiro, M.P.F. Graça // Progress in Materials Science. – 2016. – V. 80. – P. 1-37.

2. González-Martinez, S. Anisotropic photorefraction in congruent magnesium-doped lithium niobate / S. González-Martinez, J. Castillo-Torres, J.A. Hernández, et al. // Optical Materials. – 2009. – V. 31. – I. 6. – P. 936-941.

3. **Huang, C.** Subsolidus phase relations and the crystallization region of $LiNbO_3$ in the system $Li_2O - B_2O_3 - Nb_2O_5$ / C. Huang, S. Wang, N. Ye// Journal of Alloys and Compounds. - 2010. - V. 502. - I. 1. - P. 211-214.

4. **Volk, T.** Lithium niobate. Defects, photorefraction and ferroelectric switching / T. Volk, M. Wohlecke. – Berlin: Springer, 2008. – 250 p.

5. Сидоров, Н.В. Структурный беспорядок и оптические характеристики конгруэнтных кристаллов ниобата лития, выращенных из расплавов, легированных бором / Н.В. Сидоров, Н.А. Теплякова, Р.А. Титов, М.Н. Палатников // Сибирский физический журнал. – 2018. – Т. 13. – № 2. – С. 70-79.

6. **Sidorov, N.V.** Structural features, physicochemical, and optical characteristics of lithium niobate crystals grown from boron-doped melts / N.V. Sidorov, N.A. Teplyakova, R.A. Titov, M.N. Palatnikov // Technical Physics. – 2018. – V. 63. – I. 12. – P. 1762-1770.

7. Uda, S. The dissociation and ionization of the $LiNbO_3$ melts / S. Uda, W.A. Tiller // Journal of Crystal Growth. – 1992. – V. 121. – I. 1-2. – P. 155-190.

8. **O'Bryan, H.M.** Congruent composition and *Li* rich phase boundary of $LiNbO_3$ / H.M. O'Bryan, P.K. Gallagher, C.D. Brandle // Journal of the American Ceramic Society. – 1985. – V. 68. – I. 9. – P. 493-496.

9. **Palatnikov, M.N.** Effects of nonstoichiometry and doping on the Curie temperature and defect structure of lithium niobate / M.N. Palatnikov, N.V. Sidorov, V.I. Skiba, et al. // Inorganic Materials. – 2000. – V. 36. – I. 5. – P. 489-493.

10. **Koyama, C.** Investigation of defect structure of impurity-doped lithium niobate by combining thermodynamic constraints with lattice constant variations / C. Koyama, J. Nozawa, K. Maeda, K. Fujiwara, S. Uda // Journal of Applied Physics. -2015. -V. 117. -I. 1. -P. 014102-1-014102-7.

11. **Kashif, I.** XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on $LiNbO_3$ and $LiNb_3O_8$ nano-crystallite phases in lithium borate glass system / I. Kashif, A.A. Soliman, E.M. Sakr, A. Ratep // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. – 2013. – V. 113. – P. 15-21.

12. Лайнс, М. Сегнетоэлектрики и родственные им материалы / М. Лайнс, А. Гласс. – М.: Мир, 1981. – 736 с.

References:

1. **Nico, C.** Niobium oxides and niobates physical properties: Review and prospects / C. Nico, T. Monteiro, M.P.F. Graça // Progress in Materials Science. – 2016. – V. 80. – P. 1-37.

2. González-Martinez, S. Anisotropic photorefraction in congruent magnesium-doped lithium niobate / S. González-Martinez, J. Castillo-Torres, J.A. Hernández, et al. // Optical Materials. – 2009. – V. 31. – I. 6. – P. 936-941.

3. **Huang, C.** Subsolidus phase relations and the crystallization region of $LiNbO_3$ in the system $Li_2O - B_2O_3 - Nb_2O_5$ / C. Huang, S. Wang, N. Ye// Journal of Alloys and Compounds. - 2010. - V. 502. - I. 1. - P. 211-214.

4. **Volk, T.** Lithium niobate. Defects, photorefraction and ferroelectric switching / T. Volk, M. Wohlecke. – Berlin: Springer, 2008. – 250 p.

5. **Sidorov, N.V.** Structural disorder and optical characteristics of congruent lithium niobate crystals grown from boron-doped melts / N.V. Sidorov, N.A. Teplyakova, R.A. Titov, M.N. Palatnikov // Sibirskij fizicheskij zhurnal. – 2018. – V. 13. – N_{2} 2. – P. 70-79. (In Russian).

6. **Sidorov, N.V.** Structural features, physicochemical, and optical characteristics of lithium niobate crystals grown from boron-doped melts / N.V. Sidorov, N.A. Teplyakova, R.A. Titov, M.N. Palatnikov // Technical Physics. – 2018. – V. 63. – I. 12. – P. 1762-1770.

7. Uda, S. The dissociation and ionization of the $LiNbO_3$ melts / S. Uda, W.A. Tiller // Journal of Crystal Growth. – 1992. – V. 121. – I. 1-2. – P. 155-190.

8. **O'Bryan, H.M.** Congruent composition and *Li* rich phase boundary of $LiNbO_3$ / H.M. O'Bryan, P.K. Gallagher, C.D. Brandle // Journal of the American Ceramic Society. – 1985. – V. 68. – I. 9. – P. 493-496.

9. **Palatnikov, M.N.** Effects of nonstoichiometry and doping on the Curie temperature and defect structure of lithium niobate / M.N. Palatnikov, N.V. Sidorov, V.I. Skiba, et al. // Inorganic Materials. – 2000. – V. 36. – I. 5. – P. 489-493.

10. Koyama, C. Investigation of defect structure of impurity-doped lithium niobate by combining thermodynamic constraints with lattice constant variations / C. Koyama, J. Nozawa, K. Maeda, K. Fujiwara, S. Uda // Journal of Applied Physics. -2015. - V. 117. - I. 1. - P. 014102-1.014102-7.

11. **Kashif, I.** XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on $LiNbO_3$ and $LiNb_3O_8$ nano-crystallite phases in lithium borate glass system /

I. Kashif, A.A. Soliman, E.M. Sakr, A. Ratep // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. – 2013. – V. 113. – P. 15-21.

12. Lajns, M. Ferroelectrics and related materials / M. Lajns, A. Glass. – M.: Mir, 1981. – 736 p. (In Russian).

Original paper

INFLUENCE OF BORON ON STRUCTURAL FEATURES AND PHOTOREFRACTIVE PROPERTIES OF LiNbO3 SINGLE CRYSTALS

N.V. Sidorov, N.A. Teplyakova, R.A. Titov, M.N. Palatnikov

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Apatity, Russia

DOI: 10.26456/pcascnn/2019.11.223 **Abstract:** An analysis of studies of single crystals of $LiNbO_3$ stoich, $LiNbO_3$ cong and $LiNbO_3:B$ (0,83 mol.% B_2O_3 in the charge) was performed. It was established that boron present in the melt is unable to incorporate into the crystal structure of $LiNbO_3$. Boron brings closer in magnitude to each other the effective distribution coefficients of lithium and niobium linking excess niobium in the process of complexation in a melt of a congruent composition. In this case, $LiNbO_3:B$ crystals approach to the stoichiometric crystals in ordering the structural units.

Keywords: single crystal, lithium niobate, photoelectric field, boron, doping, melt structuring.

Сидоров Николай Васильевич — д.ф.-м.н., профессор, и.о. главного научного сотрудника с исполнением обязанностей заведующего сектором колебательной спектроскопии лаборатории материалов электронной техники Института химии и технологии редких элементов и минерального сырья им. И.В. Тананаева — обособленное подразделение ФГБУН Федерального исследовательского центра «Кольский научный центр Российской академии наук»

Титов Роман Алексеевич – аспирант Института химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение ФГБУН Федерального исследовательского центра «Кольский научный центр Российской академии наук»

Теплякова Наталья Александровна — к.ф.-м.н., старший научный сотрудник сектора колебательной спектроскопии лаборатории материалов электронной техники Института химии и технологии редких элементов и минерального сырья им. И.В. Тананаева — обособленное подразделение ФГБУН Федерального исследовательского центра «Кольский научный центр Российской академии наук»

Палатников Михаил Николаевич – д.т.н., и.о. главного научного сотрудника с сохранением обязанностей заведующего лабораторией материалов электронной техники Института химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение ФГБУН Федерального исследовательского центра «Кольский научный центр Российской академии наук»

Nikolay V. Sidorov – Dr. Sc., Professor, Acting as Chief Researcher and as Head of Sector of Vibrational Spectroscopy of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Roman A. Titov – postgraduate student, Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Natalya A. Teplyakova – Ph. D., Senior Researcher of Sector of Vibrational Spectroscopy of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Mikhail N. Palatnikov – Dr. Sc., Acting as Chief Researcher and as Head of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Поступила в редакцию/received: 22.09.2019; после рецензирования/revised: 27.10.2019; принята/accepted 19.11.2019.