Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный университет»

ФИЗИКО-ХИМИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ КЛАСТЕРОВ, НАНОСТРУКТУР И НАНОМАТЕРИАЛОВ

PHYSICAL AND CHEMICAL ASPECTS OF THE STUDY OF CLUSTERS, NANOSTRUCTURES AND NANOMATERIALS

FIZIKO-HIMIČESKIE ASPEKTY IZUČENIÂ KLASTEROV, NANOSTRUKTUR I NANOMATERIALOV

МЕЖВУЗОВСКИЙ СБОРНИК НАУЧНЫХ ТРУДОВ

выпуск 11

ТВЕРЬ 2019

УДК 620.22:544+621.3.049.77+539.216.2:537.311.322: 530.145 ББК Ж36:Г5+В379 Ф50

Рецензирование статей осуществляется на основании Положения о рецензировании статей и материалов для опубликования в Межвузовском сборнике научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов».

Официальный сайт издания в сети Интернет: https://www.physchemaspects.ru

Ф50 Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов [Текст]. – Тверь: Твер. гос. ун-т, 2019. – Вып. 11. – 680 с.

Зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций, свидетельство о регистрации СМИ ПИ № ФС 7747789 от 13.12.2011.

Издание составлено из оригинальных статей, кратких сообщений и обзоров теоретического и экспериментального характера, отражающих физико-химических результаты исследований области изучения В процессов с участием кластеров, наноструктур и наноматериалов физики, межфазные явления нанотермодинамику. Сборник включая И работников, инженерно-технических предназначен для научных И преподавателей ВУЗов, студентов и аспирантов. Издание подготовлено на кафедре общей физики Тверского государственного университета.

Переводное название: Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials

Транслитерация названия: Fiziko-himičeskie aspekty izučeniâ klasterov, nanostruktur i nanomaterialov

УДК 620.22:544+621.3.049.77+539.216.2:537.311.322: 530.145 ББК Ж36:Г5+В379

Print ISSN 2226-4442 Online ISSN 2658-4360

© Коллектив авторов, 2019

© Тверской государственный университет, 2019

УДК 548.57

Оригинальная статья

СТРУКТУРНЫЕ ОСОБЕННОСТИ КЕРАМИКИ НИОБАТА НАТРИЯ–ЛИТИЯ

О.В. Малышкина¹, Е.С. Тесникова², Н.Е. Малышева³, А.И. Иванова¹ ¹ФГБОУ ВО «Тверской государственный университет»,

170100, Россия, Тверь, ул. Желябова, 33

²ФГБОУ ВО «Московский авиационный институт (национальный исследовательский

университет)»

125993, Россия, Москва, Волоколамское шоссе, 4

³ФГКВОУ ВПО «Военная академия воздушно-космической обороны

имени Маршала Советского Союза Г.К. Жукова»

170022, Россия, Тверь, ул. Жигарева, 50

Olga.Malyshkina@mail.ru

DOI: 10.26456/pcascnn/2019.11.198

Аннотация: Авторами синтезированы образцы и проведены исследования структуры пьезоэлектрической керамики на основе ниобатов натрия и лития $Li_{1-x}Na_xNbO_3$. Показана существенная зависимость зернообразования в процессе спекания образцов от соотношения Li/Na. С учетом анализа структуры и измерения температурной зависимости диэлектрической проницаемости выявлены оптимальные составы для возможного практического применения $Li_{0,1}Na_{0,9}NbO_3$ и $Li_{0,4}Na_{0,6}NbO_3$.

Ключевые слова: пьезоэлектрическая керамика, бессвинцовые материалы, структура зерен.

1. Введение

Уже более полувека пьезоэлектрикам уделяется большое внимание. Они используются современной технике. Существуют широко В пьезоэлектрические детонаторы, источники звука огромной мощности, трансформаторы, миниатюрные кварцевые резонаторы для высокостабильных генераторов частоты, пьезокерамические фильтры, задержки, топливные форсунки дизельных ультразвуковые ЛИНИИ ультразвуковые устройства, двигателей, гидролокаторы, И сканирующих микроскопах. Наиболее широкое нанопозиционеры в применение в этих целях получила поляризованная пьезокерамика, изготовленная из цирконата-титаната свинца (ЦТС) [1, 2]. Недостатком этого материала является высокое содержание свинца, которое создает опасность при обработке, ограничивает применение, и представляет потенциальную экологическую опасность при утилизации. За последние несколько лет, регулирующие органы во всем мире вводят строгие ограничения на использование свинца [3]. В настоящее время сделано исключение пьезоэлектриков. Это связано отсутствием для С бессвинцовых керамик, способных заменить свинецсодержащие на важнейших направлениях их применения.

Значительные исследования в области бессвинцовых альтернатив ЦТС начались более пятнадцати лет назад, хотя основные материалы

известны уже более полувека [4, 5]. Несмотря на значительные усилия в деле разработки таких материалов, предпринятые за последние 15 лет, окончательно эта проблема остаётся нерешённой [6, 7]. Таким образом, очевидно, что доминирующей на европейском рынке в будущем станет продукция, основанная на использовании материалов альтернативных свинецсодержащим.

2. Постановка задачи

Среди многих альтернатив выделяется пьезоэлектрическая керамика на основе ниобата натрия-калия (KNN), которая считается возможной заменой ЦТС из-за своей относительно высокой температуры Кюри, хороших сегнетоэлектрических свойств и высокого коэффициента электромеханической связи, особенно при производстве горячим прессованием. Однако широкому промышленному применению до сих пор препятствует несколько недостатков. KNN образуются из летучих соединений щелочных металлов, что приводит к возникновению ряда трудностей технологического характера при синтезе и спекании керамик [8]. Кроме того, наиболее эффективные керамики на основе KNN получены в области полиморфного перехода между тетрагональной и орторомбической фазами, что приводит к возникновению эффекта фазопереходной усталости даже при незначительном нагревании керамик и существенно ограничивает спектр возможных практических применений [9, 10]. В связи с этим актуальной научно-практической задачей является не только поиск новых пьезокерамических материалов, но и снижение трудностей технологического характера при синтезе и спекании керамик, а также получение оптимального состава параметров И синтеза бессвинцовых керамических материалов для улучшения пьезоэлектрических и электромеханических характеристик пьезокерамики.

Целью настоящей работы являлось получение и исследование образцов керамики ниобата лития — натрия $Li_{1-x}Na_xNbO_3$ в различных процентных соотношениях лития и натрия (с x = 0.9; 0.8; 0.7; 0.6; 0.5; 0.4 и 0.1).

3. Экспериментальная часть и описание результатов

Синтез материалов *LiNbO*₃ и *NaNbO*₃ осуществлялся раздельно, первый при температуре 700 °С, второй – 650 °С. Смешивание в определенных пропорциях порошков *LiNbO*₃ и *NaNbO*₃ происходило перед прессованием образцов. Спекание осуществлялось при температуре 1100 °С. Необходимо отметить, что, в отличие от порошка ниобата натрия, порошок ниобата лития сыпучий, и имеет блеск. Исследование на растровом электронном микроскопе (см. рис. 1) показало, что частички порошка *NaNbO*₃ притягиваются друг к другу, следовательно, порошок становится менее рассыпчатым. Различие в поведении порошков может быть обусловлено гигроскопичностью материала *NaNbO*₃, который адсорбирует молекулы воды из воздуха.

Несмотря на то, что все заготовки имели диаметр 10 мм, после спекания размер образцов различался (см. Таблицу 1). Изменение размеров связано с уплотнением материала в процессе спекания. Этот вывод был подтвержден измерением плотности образцов (см. Таблицу 1).

Рис. 1. РЭМ изображение порошков: a – *LiNbO*₃, б – *NaNbO*₃. Масштабная метка 1 мкм.

· 1		1 .	1- <i>x x</i>	. 5			
X	0,9	0,8	0,7	0,6	0,5	0,4	0,1
Диаметр, мм	9,7	9,3	9,1	9,3	9,5	9,7	10,15
Плотность г/м ³	3,22	3,46	3,86	3,82	3,61	3,69	3,41
	tym	E 12V W012mm	орана 1944 к.200	tom	SE 124 WDI2mm	 S54 x200 	000 C
a	tym	5E 12V W012mm		0µm	SEI 124V WD12mm	B	equation with the second se

Таблица 1. Размер и плотность образцов *Li*_{1-x}*Na*_x*NbO*₃

Рис. 2. Структура поверхности керамиики $Li_{1-x}Na_xNbO_3$: а – x = 0,9; б – x = 0,8; в – x = 0,7; г – x = 0,6; д – x = 0,4; е – x = 0,1. Масштабная метка 10 мкм.

Замена в структуре ниобата ионов калия на ионы лития приводит к принципиальному изменению формы зерен. Так, если у ниобата натрия-калия (KNN) зерна имеют кубическую форму [11], то у полученной в работе керамики ниобата натрия-лития (LNN) зерна неправильной формы (см. рис. 2), что значительно увеличивает плотность их упаковки.

В целом упаковка зерен образцов LNN подобна наблюдаемой у керамики ЦТС [12], но структура отдельно взятого зерна существенным образом определяется концентрацией лития. Если при x=0,9 керамика имеет гладкие зерна (см. рис. 3 а), то зерна керамики с x=0,6 все покрыта «пупырышками» (см. рис. 3 б), которые можно интерпретировать как островковую кристаллизацию, когда рост зерна осуществляется не равномерно по всей поверхности. На зернах всех остальных составов наблюдаются слои роста (см. рис. 3 в), размер которых различен для каждого из состава.

Рис. 3. Структура поверхности керамиики $Li_{1-x}Na_xNbO_3$: a - x = 0,9; б - x = 0,6; в - x = 0,4. Масштабная метка 2 мкм.

Несмотря на существенное различие в структуре зерен образцов с x=0,9 и x=0,6, они оказались наиболее прочными. Образцы остальных составов были достаточно хрупкими, они легко ломались и расслаивались при приложении незначительного усилия. В тоже время измерение микротвёрдости по Виккерсу (вдавливанием алмазной пирамиды) показало, что наблюдаемая «хрупкость» образцов никак не связана с микротвёрдостью (см. Таблицу 2). Расчет числа микротвёрдости *H* производился по формуле: $H = P/[d^2/1,854]$, где P – нагрузка на пирамиду, кг (в эксперименте P=0,2 кг), d – среднее значение длины обеих диагоналей отпечатка пирамиды (мм) (см. рис. 4).

Таблица 2. Число микротвердости образцов Li_{1-x}Na_xNbO₃

1 1	1	$I = \lambda$ λ	5	
X	0,9	0,6	0,4	0,1
H , кг/мм 2	89	169	118	104

Как можно видеть из данных Таблицы 2 наибольшей твердостью обладает образец с x=0,6, рост зерен которого в процессе спекания осуществляется по принципу островковой кристаллизации. У образца с x=0,9, несмотря на большую прочность, число микротвёрдости наименьшее. Поскольку образцы керамики KNN имеют значительно меньшее число микротвёрдости – 65 кг/мм², можно сделать вывод, что

изменение формы зерен вследствие замены в структуре ниобата ионов калия ионам лития, приводит и к увеличении микротвёрдости образцов.

Рис. 4. Изображения отпечатков пирамиды на образцах керамиики $Li_{1-x}Na_xNbO_3$: a – x = 0,1; б – x = 0,4; в – x = 0,6; г – x = 0,9. Масштабная метка 10 мкм.

Поскольку практическое применение пьезоэлектрической керамики в очередь обусловлено диэлектрическими свойствами, были первую проведены исследования температурной зависимости диэлектрической проницаемости (см. рис. 5 а). Как можно видеть, все образцы имеют на температурной зависимости диэлектрической максимум проницаемости. В тоже время только образцы с x = 0,9 и x = 0,6 имеют острый. «классический» соответствующий максимум, фазовому переходу. У остальных сегнетоэлектрическому образцов величина диэлектрической проницаемости в максимуме значительно меньше, и в процессе нагрева в районе максимума наблюдались колебания ее значений в пределах 20%. У образца с x=0,5 имеется два равнозначных по величине максимума, что делает невозможным определение основного. Такое поведение диэлектрической проницаемости в районе фазового перехода, по всей видимости, обусловлено неоднородностью соотношения *Li* / *Na* по объему этих образцов, что приводит к существованию локальных точек Кюри [5], т.е. фазовый переход из сегнетоэлектрической фазы в параэлектрическую в различных областях образца происходит при разных температурах.

Исследуемая керамика ниобата лития-натрия является твердым раствором, но поскольку оба составляющих ее состава – ниобат натрия и ниобат лития, являются сегнетоэлектриками, нельзя выделить основной и замещающий составы. По всей видимости, именно этой особенностью объясняется отсутствие зависимости положения точки Кюри от соотношения *Li* / *Na* (см. рис. 5 б), свойственное твердым растворам [5].

Рис. 5. Температурная зависимость диэлектрической проницаемости образцов керамиики $Li_{1-x}Na_xNbO_3$ (a): кривая 1 - x = 0,9; кривая 2 - x = 0,8; кривая 3 - x = 0,7; кривая 4 - x = 0,6; кривая 5 - x = 0,5. Зависимость положения максимума диэлектрической проницаемости от концентрации Na (б).

4. Заключение

Сравнительный анализ результатов структурных исследований и диэлектрических свойств показал, что из всех исследуемых составов образцы с x=0,9 и x=0,6 имеют наиболее оптимальные свойства для возможного практического применения в качестве пьезоэлектрических датчиков. Более плотная упаковка зерен в структуре керамики ниобата лития-натрия (схожая со структурой керамики ЦТС [12]), по сравнению с керамикой ниобата натрия-калия также делает этот материал более перспективным для дальнейшего исследования.

Результаты работы получены в рамках выполнения государственного задания Минобрнауки РФ.

Библиографический список:

1. Uchino, K. Advanced piezoelectric materials. Science and technology / K. Uchino. – Oxford, Cambridge, Philadelphia, New Delhi: Woodhead Publishing, 2010. – 688 p.

2. Головнин, В.А. Физические основы, методы исследования и практическое применение пьезоматериалов / В.А. Головнин, И.А. Каплунов, Б.Б. Педько, О.В. Малышкина, А.А. Мовчикова. – М.: ТЕХНОСФЕРА, 2013. – 272 с.

3. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Official Journal of the European Union L 37. - 2003. - V. 46. - P. 19-23.

4. Egerton, L. Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate / L. Egerton, D.M. Dillon // Journal of the American Ceramic Society. – 1959. – V. 42. – I. 9. – P. 438-442.

5. Смоленский, Г.А. Физика сегнетоэлектрических явлений / Г.А. Смоленский,

В.А. Боков и др.; ред. Г.А. Смоленский; ФТИ им. А.Ф. Иоффе АН СССР. – Л.: Наука, 1985. – 396 с.

6. Резниченко, Л.А. Бессвинцовые сегнетопьезоэлектрические поликристаллические материалы на основе ниобатов щелочных металлов: история, технология, перспективы / Л.А. Резниченко, И.А. Вербенко, К.П. Андрюшин // Фазовые переходы, упорядоченные состояния и новые материалы. – 2013. – № 11. – С. 30-46.

7. **Saito, Y.** Lead-free piezoceramics / Y. Saito, H. Takao, T. Tani, et al. // Nature. – 2004. – V. 432. – I. 7013. – P. 84-87.

8. Вербенко, И.А. Получение и диэлектрические свойства бессвинцовых керамик состава $\left[\left(Na_{0,5}K_{0,5} \right)_{1-x} Li_x \right] \left(Nb_{1-y-z}Ta_ySb_z \right) O_3 / И.А. Вербенко, О.Н. Разумовская,$

Л.А. Шилкина, Л.А. Резниченко, К.П. Андрюшин // Неорганические материалы. – 2009. – Т. 45. – № 6. – 762-768.

9. Hollenstein, E. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics / E. Hollenstein, D. Damjanovic, N. Setter // Journal of the European Ceramic Society. - 2007. - V. 27. - I. 13-15. - P. 4093-4097.

10. **Higashide, K.** Temperature dependence on the piezoelectric property of $(1-x)(Na_{0.5}K_{0.5})NbO_3 - xLiNbO_3$ ceramics / K. Higashide, K.-I. Kakimoto, H. Ohsato // Journal of the European Ceramic Society. – 2007. – V. 27. – I. 13-15. – P. 4107-4110.

11. **Zang, G.-Z.** Microstructure and electrical properties of $(Na_{1,015-x}K_x)NbO_3$ lead-free piezoceramics / G.-Z. Zang, X.-J. Yi, J. Du, et al. // Journal of Materials Science Materials in Electronics. – 2011. – V. 22. – I. 9. – P. 1282-1285.

12. **Малышкина, О.В.** Формирование микроструктуры керамики многослойных актюаторов / О.В. Малышкина, А.Ю. Елисеев, В.А. Головнин и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2015. – № 9. – С. 40-44.

References:

1. Uchino, K. Advanced piezoelectric materials. Science and technology / K. Uchino. – Oxford, Cambridge, Philadelphia, New Delhi: Woodhead Publishing, 2010. – 688 p.

2. Golovnin, V.A. Physical foundations, research methods and practical application of piezomaterials / V.A. Golovnin, I.A. Kaplunov, B.B. Ped'ko, O.V. Malyshkina, A.A. Movchikova. – M.: TEKHNOSFERA, 2013. – 272 p. (In Russian).

3. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Official Journal of the European Union L 37. -2003. - V.46. - P.19-23.

4. **Egerton, L.** Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate / L. Egerton, D.M. Dillon // Journal of the American Ceramic Society. – 1959. – V. 42. – I. 9. – P. 438-442.

5 **Smolenskij, G.A.** Physics of ferroelectric phenomena / G.A. Smolenskij, V.A. Bokov et al.; red. G.A. Smolenskij; FTI im. A.F. Ioffe AN SSSR. – L.: Nauka, 1985. – 396 p. (In Russian).

6. **Reznichenko, L.A.** Lead-free ferro-piezoelectric polycrystalline materials based on alkali metal niobates: history, technology, prospects / L.A. Reznichenko, I.A. Verbenko, K.P. Andryushin // Fazovye perekhody, uporyadochennye sostoyaniya i novye materialy. $-2013. - N_{\rm P} 11. - P. 30-46$. (In Russian).

8. Verbenko, I.A. Production and dielectric properties of lead-free ceramics with the formula

^{7.} **Saito, Y.** Lead-free piezoceramics / Y. Saito, H. Takao, T. Tani, et al. // Nature. – 2004. – V. 432. – I. 7013. – P. 84-87.

 $\left[\left(Na_{0.5}K_{0.5}\right)_{1-x}Li_{x}\right]\left(Nb_{1-y-z}Ta_{y}Sb_{z}\right)O_{3}$ / I.A. Verbenko, O.N. Razumovskaya, L.A. Shilkina, L.A. Reznichenko, K.P. Andryushin // Inorganic Materials. – 2009. – V. 45. – I. 6. – P. 702-708.

9. Hollenstein, E. Temperature stability of the piezoelectric properties of Li – modified KNN ceramics / E. Hollenstein, D. Damjanovic, N. Setter // Journal of the European Ceramic Society. – 2007. – V. 27. – I. 13-15. – P. 4093-4097.

10. **Higashide, K.** Temperature dependence on the piezoelectric property of $(1-x)(Na_{0,5}K_{0,5})NbO_3 - xLiNbO_3$ ceramics / K. Higashide, K.-I. Kakimoto, H. Ohsato //

Journal of the European Ceramic Society. - 2007. - V. 27. - I. 13-15. - P. 4107-4110.

1. Zang, G.-Z. Microstructure and electrical properties of $(Na_{1,015-x}K_x)NbO_3$ lead-free

piezoceramics / G.-Z. Zang, X.-J. Yi, J. Du, et al. // Journal of Materials Science Materials in Electronics. – 2011. – V. 22. – I. 9. – P. 1282-1285.

12. **Malyshkina, O.V.** Microstructure formation in ceramic multilayer actuators / O.V. Malyshkina, A.Yu. Eliseev, V.A. Golovnin, et al. // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. -2015. -V. 9. $-N_{2}$. 5. -P. 899-903.

Original paper

STRUCTURAL FEATURES OF SODIUM – LITHIUM NIOBAT CERAMICS

O.V. Malyshkina¹, E.S. Tesnikova², N.E. Malysheva³, A.I. Ivanova¹

¹Tver State University, Tver, Russia

²Moscow Aviation Institute (National Research University), Moscow, Russia

³Military Aerospace Academy named after Marshal of the Soviet Union G.K. Zhukov, Tver, Russia

DOI: 10.26456/pcascnn/2019.11.198 **Abstract:** The authors synthesized samples and studied the structure of piezoelectric ceramics based on sodium and lithium niobates $Li_{1-x}Na_xNbO_3$. A significant dependence of the grain formation during sintering of the samples on the ratio Li / Na is revealed. Based on the analysis of the structure and measurement of the temperature dependence of the dielectric constant, the optimal compositions for practical application are proposed $Li_{0,1}Na_{0,9}NbO_3$ and $Li_{0,4}Na_{0,6}NbO_3$.

Keywords: piezoelectric ceramics, lead-free materials, grain structure.

Малышкина Ольга Витальевна – д.ф.-м.н., профессор, профессор кафедры прикладной физики ФГБОУ ВО «Тверской государственный университет»

Тесникова Екатерина Сергеевна – студентка, ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)»

Малышева Наталья Евгеньевна – старший преподаватель кафедры № 13, ФГКВОУ ВПО «Военная академия воздушно-космической обороны

имени Маршала Советского Союза Г.К. Жукова»

Иванова Александра Ивановна – к.ф.-м.н., доцент кафедры прикладной физики ФГБОУ ВО «Тверской государственный университет»

Olga V. Malyshkina – Dr. Sc., Full Professor of the Applied Physic Department, Tver State University Ekaterina S. Tesnikova – student, Moscow Aviation Institute (National Research University) Nataliya E. Malysheva – Senior Lecture of the Department № 13, Military Aerospace Academy named after Marshal of the Soviet Union G.K. Zhukov Alexandra I. Ivanova – Ph. D., Docent of the Applied Physic Department, Tver State University

Поступила в редакцию/received: 20.08.2019; после рецензирования/revised: 27.09.2019; принята/accepted 30.10.2019.