Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный университет»

ФИЗИКО-ХИМИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ КЛАСТЕРОВ, НАНОСТРУКТУР И НАНОМАТЕРИАЛОВ

МЕЖВУЗОВСКИЙ СБОРНИК НАУЧНЫХ ТРУДОВ

выпуск 9

УДК 620.22:544+621.3.049.77+539.216.2:537.311.322: 530.145 ББК Ж36:Г5+В379 Ф50

Рецензирование статей осуществляется на основания Положения об рецензировании статей и материалов для опубликования в Межвузовском сборнике научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов».

Официальный сайт издания в сети Интернет: www.physchemaspects.ru

Ф50 Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов [Текст]: межвуз. сб. науч. тр. / под общей редакцией В.М. Самсонова, Н.Ю. Сдобнякова. – Тверь: Твер. гос. ун-т, 2017. – Вып. 9. – 592 с.

ISBN 978-5-7609-1275-6

Зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций, свидетельство о регистрации СМИ ПИ № ФС 7747789 от 13.12.2011.

Сборник составлен из оригинальных статей теоретического и экспериментального характера, отражающих результаты исследований в области изучения физико-химических процессов с участием кластеров, наноструктур и наноматериалов физики, включая межфазные явления и нанотермодинамику. Сборник предназначен для научных и инженернотехнических работников, преподавателей ВУЗов, студентов и аспирантов. Издание подготовлено на кафедре общей физики Тверского государственного университета.

УДК 620.22:544+621.3.049.77+539.216.2:537.311.322: 530.145 ББК Ж36:Г5+В379

ISBN 978-5-7609-1275-6 ISSN 2226-4442

[©] Коллектив авторов, 2017

[©] Тверской государственный университет, 2017

УДК 537.62

МАГНИТНЫЕ СВОЙСТВА СПЕЧЕННЫХ ГЕТЕРОГЕННЫХ КОМПОЗИЦИЙ НА ОСНОВЕ СПЛАВОВ 3d – И 4f –ПЕРЕХОДНЫХ МЕТАЛЛОВ

О.Б. Дегтева, Е.М. Семенова, М.Б. Ляхова, Ю.В. Кузнецова ФГБОУ ВО «Тверской государственный университет» 170100, Россия, Тверь, ул. Желябова, 33 semenova.em@tversu.ru

DOI: 10.26456/pcascnn/2017.9.169

Аннотация: В работе представлены результаты исследования процессов перемагничивания спеченных порошковых композиций на основе микропорошков сплавов $Nd_2Fe_{14}B$ и $Sm(Co_{0,6}Cu_{0,4})_{6,0}$. Получены образцы в высококоэрцитивном состоянии. Показано, что увеличение объемного содержания $Nd_2Fe_{14}B$ в составе исследуемых образцов приводит к росту значений намагниченности насыщения и к значительному падению коэрцитивной силы.

Ключевые слова: магнитные свойства, гетерогенность, редкоземельные интерметаллиды, коэрцитивная сила.

1. Введение

Область применения магнитотвердых ферромагнетиков определяется несколькими ключевыми характеристиками: намагниченностью насыщения, остаточной намагниченностью, коэрцитивной силой и их температурной стабильностью. Первый параметр зависит от элементного состава материала, а остальные являются структурно-чувствительными и их можно варьировать в широком диапазоне контролируя микро- или наноструктуру магнитного материала термическими обработками.

Примером гетерогенного магнитного материала с высокими значениями намагниченности насыщения и коэрцитивного поля могут служить сплавы $(Sm,Zr)(Co,Cu,Fe)_z$ [1-4]. В процессе термических обработок в них формируется регулярная микро- и наногетерогенная структура, образованная составляющими с интегральным стехиометрическим соотношением SmM_5 и Sm_2M_{17} (M=Fe,Co,Cu) [1-3]. В сплавах такого типа в высококоэрцитивном состоянии перемагничивание осуществляется по смешанному механизму: кроме задержки смещения доменных границ одновременно происходят процессы необратимого вращения вектора спонтанной намагниченности [4].

Данная работа направлена на создание искусственных гетерогенных композиций, состоящих из областей с разными механизмами перемагничивания.

В качестве исходных сплавов, на основе которых были изготовлены спеченные порошковые композиции, использовались соединения $Sm(Co_{0.6}Cu_{0.4})_{6.0}$ и $Nd_2Fe_{14}B$. Оба соединения вблизи комнатной температуры

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов

характеризуются магнитокристаллической анизотропией (МКА) типа «ось легкого намагничивания», но принципиально различаются как по магнитным характеристикам, так и по механизму магнитного гистерезиса. Сплав $Sm(Co_{0,6}Cu_{0,4})_{6,0}$ характеризуется высокими значениями константы $(k_1 \sim 10^7 \text{ spr} \cdot \text{cm}^{-3})$ анизотропии И коэрцитивной силы, низкой намагниченностью насыщения, и механизмом магнитного гистерезиса, обусловленным задержкой смещения доменных границ [6, 7]. Соединение $Nd_{2}Fe_{14}B$ имеет высокие значения намагниченности насыщения и $(k_1 \sim 10^6 \text{ 3pr} \cdot \text{cm}^{-3}).$ сравнительно анизотропии низкую константу В порошковых постоянных магнитах типа Nd-Fe-B матричные зерна имеют состав $Nd_{2}Fe_{14}B$ и перемагничиваются по механизму задержки роста зародышей обратной магнитной фазы [8].

Необходимо отметить, что, исходя из фазового состава сплавов $(Sm, Zr)(Co, Cu, Fe)_z$, логичнее было бы выбрать в качестве второго компонента гетерогенных композиций соединение $Sm_2(Co, Fe)_{17}$. Однако, в интересующем нас интервале концентраций железа, это соединение характеризуется МКА типа «легкая плоскость», что существенно усложняет изготовление магнитотекстурованных образцов.

2. Методика изготовления образцов и измерений

В качестве исходных компонентов использовались металлы высокой степени чистоты: Sm, Nd-99, 9%, Co, Cu, Fe-99, 99%, B-99, 9%. Перед приготовлением шихты поверхность исходных металлов очищалась от окислов и обезжиривалась.

Исходные сплавы получали методом высокочастотной индукционной плавки в атмосфере особо чистого аргона (содержание влаги менее 0,02 м⁻³, азота — 0,0005%, кислорода — 0,001%). Контроль микроструктуры производился методами оптической металлографии и термомагнитного анализа.

В экспериментах по получению гетерогенных композиций на основе сплавов $Sm(Co_{0,6}Cu_{0,4})_{6,0}$ и $Nd_2Fe_{14}B$ проводились операции измельчения, формования порошковых брикетов и спекания.

Сплавы грубо измельчались до размеров частиц менее 300 мкм, нужная фракция выделялась с помощью сита. Тонкое измельчение до размеров частиц 1–10 мкм проводилось в центробежно-планетарной мельнице. В качестве ПАВ использовался этиловый спирт. Время размола изменялось в пределах 6–8 минут. Для предотвращения возможного перегрева порошка после каждой минуты размола делался 10 минутный перерыв для охлаждения кюветы.

Межвузовский сборник научных трудов Выпуск 9, 2017

Формирование порошковых брикетов проводилось методом влажного прессования с взаимно перпендикулярными направлениями приложенного давления и ориентирующего поля. Пресс-форма из немагнитной стали устанавливалась между полюсами электромагнита в ориентирующем поле 15 кЭ. Этот способ позволял при приложении давления $5 \cdot 10^3 \; \text{H} \cdot \text{cm}^{-2}$ получать брикеты с плотностью порядка 50% от плотности литого состояния. Такая плотность требует спекания при повышенной температуре, однако высокая степень текстуры и ее однородность дает возможность реализовать в образцах постоянных порошковых магнитов высокие магнитные характеристики. Плотность методом гидростатического спеченных образцов определялась взвешивания.

(спекание обработки Высокотемпературные гомогенизация) И композиций проводились гетерогенных печи сопротивления В СШВ 0,6/16И2 с применением геттера, в качестве которого использовался крупный порошок Sm-Co с содержанием самария 36-37 вес.%. Спекание проводилось в течение 1 часа в вакууме 10⁻³ мм.рт.ст, где процесс идет более активно, гомогенизация – в атмосфере особо чистого аргона при давлении 1,5 атм.

Измерения магнитных свойств проводились при комнатной температуре на вибрационном магнитометре в полях до 30 кЭ.

3. Эксперимент и обсуждение результатов

Оба сплава $Sm(Co_{0,6}Cu_{0,4})_{6,0}$ и $Nd_2Fe_{14}B$ были получены в однофазном состоянии и на их основе получены порошки с размерами частиц 1-10 мкм. Аттестация их магнитных свойств проводилась на текстурованных порошках (см. Таблица 1).

Таблица 1. Магнитные характеристики порошков исходных сплавов

Сплав	σ_s , $\Gamma c \cdot c m^3 \cdot \Gamma^{-1}$	σ_r , $\Gamma c \cdot cm^3 \cdot r^{-1}$	<i>H_{cl}</i> , кЭ
$Nd_2Fe_{14}B$	130,90	14,00	0,20
$Sm(Co_{0,6}Cu_{0,4})_{6,0}$	29,00	23,50	19,25

На их основе были сформированы порошковые композиции с различным содержанием компонентов: $10\%~Nd_2Fe_{14}B+90\%~Sm(Co_{0,6}Cu_{0,4})_{6,0}$, $30\%~Nd_2Fe_{14}B+70\%~Sm(Co_{0,6}Cu_{0,4})_{6,0}$, $50\%~Nd_2Fe_{14}B+50\%~Sm(Co_{0,6}Cu_{0,4})_{6,0}$.

Оптимальная температура спекания порошковых композиций подбиралась экспериментально. В Таблице 2 представлены по два наиболее удачных режима. Оптимальная длительность спекания в среднем составила 1 час. Плотность полученных спеченных брикетов также приведена в Таблице 2. Самую высокую плотность имели образцы с

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов

содержанием порошка $Nd_2Fe_{14}B$ 10% вес., которые спекались при более высоких температурах (1100 и 1070°С). Остальные спеченные порошковые брикеты имели меньшую плотность, и характеризовались пористостью и низкой механической прочностью. Следует отметить, что увеличение температуры спекания в ряде случаев приводило к сплавлению порошков и формированию неоднородной пористой структуры композитов.

Таблица 2. Магнитные характеристики спеченных порошковых композиций: температуры спекания T_s , плотность ρ , удельная намагниченность насыщения σ_s , удельная остаточная намагниченность σ_r и коэрцитивная сила H_{cl}

Состав	T_s , °C	ρ, _{Γ·cm⁻³}	σ_s , $\Gamma c \cdot c m^3 \cdot \Gamma^{-1}$	σ_r , $\Gamma c \cdot c m^3 \cdot \Gamma^{-1}$	<i>Н_{cI}</i> , кЭ	Условное обозначение образцов
$10\% Nd_2Fe_{14}B$	1100	8,40	55,30	25,00	3,82	Nd10(I)
$+90\% Sm(Co_{0,6}Cu_{0,4})_{6,0}$	1070	8,30	50,40	24,30	4,78	Nd10(II)
$30\% Nd_2Fe_{14}B$	1000	7,16	76,30	6,00	0,22	Nd30(I)
$+70\% Sm(Co_{0,6}Cu_{0,4})_{6,0}$	900	6,90	81,40	6,80	0,24	Nd30(II)
$50\% Nd_2Fe_{14}B$	1000	7,50	124,60	<1,00	<0,10	Nd50(I)
$+50\% Sm(Co_{0,6}Cu_{0,4})_{6,0}$	900	7,28	107,00	<1,00	< 0,10	Nd50(II)

Как видно из Таблицы 2, увеличение в спеченных образцах содержания порошка $Nd_2Fe_{14}B$ приводит к росту намагниченности насыщения. Величину коэрцитивной силы, достаточную для исследования ее угловых зависимостей, удалось реализовать на составах Nd10(I,II) и Nd30(I,II). В образцах Nd50(I,II) наблюдается резкое падение H_{cI} до значений меньше 0,1 кЭ. Этот эффект, по-видимому, связан с сильной диффузией атомов железа в процессе спекания в фазу $Sm(Co_{0,6}Cu_{0,4})_{6,0}$, в результате чего могут происходить заметные изменения состава фаз спеченных композиций по сравнению с химическим составом исходных порошков.

На рис.1 представлены экспериментальные кривые намагничивания текстурованных порошков исходных сплавов и спеченных композиций на их основе. Измерения проводили вдоль оси магнитной текстуры при комнатной температуре. Во всех случаях образцы, спеченные при более высоких температурах, имеют удельную намагниченность насыщения выше, чем у аналогичных составов с более низкой температурой спекания, что связано с уменьшением плотности образцов.

На рис. 2, в качестве примера, приведены кривые размагничивания для исходных сплавов и порошковых композиций Nd10(I,II) Характер кривых свидетельствует о преобладающем механизме задержки смещения доменных границ. Необходимо отметить, что при увеличении содержания

порошка $Sm(Co_{0,6}Cu_{0,4})_{6,0}$, на них наблюдаются перегибы, связанные с присутствием двух магнитных фаз.

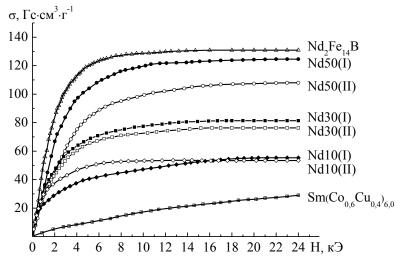


Рис. 1. Кривые намагничивания текстурованного порошка исходного сплава $Nd_2Fe_{14}B$, порошковых композиций Nd50, Nd30 и Nd10, спеченных при разных температурах, и сплава $Sm(Co_{0.6}Cu_{0.4})_{6.0}$.

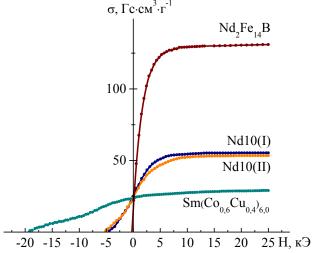


Рис. 2. Размагничивающие части петель гистерезиса текстурованного порошка исходного сплава $Nd_2Fe_{14}B$, порошковых композиций Nd10(I), Nd10(II) и сплава $Sm(Co_{0.6}Cu_{0.4})_{6.0}$.

Для дополнительного анализа механизмов магнитного гистерезиса были измерены угловые зависимости коэрцитивной силы $H_{cl}(\varphi)$. Значения H_{cl} образцов различаются (см. Таблица 2), поэтому для того, чтобы наглядно сопоставить ход кривых, были построены угловые зависимости в приведенной форме: значения $H_{cl}(\varphi)$, измеренные при размагничивании образца под углом φ к оси текстуры, соотнесены со значением коэрцитивной силы в направлении оси текстуры $H_{cl}(\varphi)/H_c(0)$ (см. рис. 3). Анализ полученных графиков показывает, что для образцов с 10% и 30%

содержанием порошка $Nd_2Fe_{14}B$ кривые не описываются ни законом $1/\cos\varphi$, ни кривой Стонера-Вольфарта [9], что не позволяет отнести их к одному из известных механизмов гистерезиса.

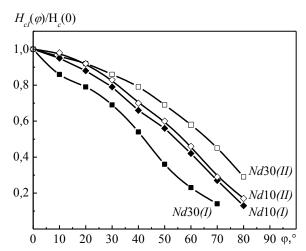


Рис. 3. Угловые зависимости коэрцитивной силы образцов Nd30 и Nd10.

На тех же образцах были измерены угловые зависимости удельной намагниченности в постоянном по величине магнитном поле $\sigma_{\scriptscriptstyle H}(\varphi)$ (см. рис. 4). Измерение $\sigma_{H}(\varphi)$ производилось следующим 1) исследуемый образец намагничивался до насыщения в направлении оси поле 30 кЭ: 2) затем намагничивания В значение легкого уменьшалось до заданной величины Н (от 0 до 18 кЭ с шагом 2 кЭ) и в постоянном поле при вращении образца на 360° регистрировались значения удельной намагниченности.

Основные закономерности изменения хода кривых $\sigma_H(\varphi)$ спеченных композиций при увеличении внешнего поля в основном аналогичны тем, которые ранее были описаны для сплавов $(Sm,Zr)(Co,Cu,Fe)_z$ со смешанным механизмом перемагничивания [4]. При величине внешнего поля $H < H_{cl}$ на кривых наблюдается минимум при $\varphi = 180^\circ$ в области отрицательных значений намагниченности. При $H > H_{cl}$ на зависимостях $\sigma_H(\varphi)$ присутствует два минимума при $\varphi = 90^\circ$ и 270° , разделенные максимумом при $\varphi = 180^\circ$. Характер кривых $\sigma_H(\varphi)$ в больших по величине полях свидетельствует о существенном вкладе процессов вращения вектора намагниченности в перемагничивание образцов.

Выявить доменную структуру образцов методом магнитооптического эффекта Керра не удалось по причине того, что размеры доменов находятся на пределе разрешающей способности оптического микроскопа. Доменная структура композиций была выявлена с помощью магнитной силовой микроскопии (см. рис. 5).

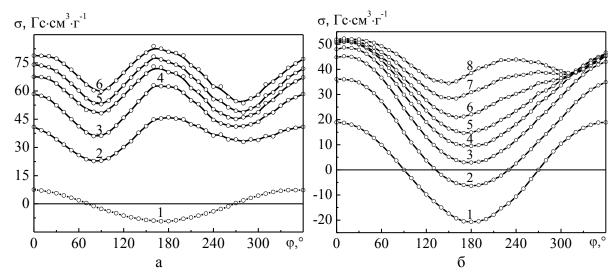


Рис. 4. Угловые зависимости удельной намагниченности образцов: a - Nd30(I), измеренные в полях (кЭ): 0 (1), 2 (2), 4 (3), 6 (4), 8 (5) 14 (6); б -Nd10(I), измеренные в полях (кЭ): 0 (1), 2 (2), 4 (3), 6 (4), 8 (5), 10 (6), 12 (7), 14 (8).

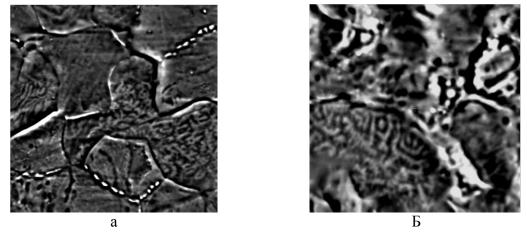


Рис. 5. Поверхностная доменная структура образцов: а — Nd30(I), б —Nd50(I). Поле зрения 25×25 мкм.

Доменная структура композиций имеет ряд особенностей. Для составов Nd30 и Nd50 доменные границы не пересекают границы зерен, а домены имеют вид «звездочек» или «лабиринтов» в зависимости от кристаллографической ориентации зерен. Кроме того, на границах зерен выявляются дополнительные замыкающие домены. В композициях Nd30 зерна наиболее магнитоизолированы и для этого состава наблюдаются наименьшие значения H_{cl} (0,1 кЭ). Средняя ширина поверхностных доменов не превышает 0,9 мкм.

Заключение

Полученные в работе спеченные композиции представляют собой смесь двух типов ферромагнитных микропорошков на основе соединений

Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов

с заведомо различными механизмами перемагничивания. Ход угловых коэрцитивной силы зависимостей $H_{cl}(\varphi)$ и намагниченности композиций спеченных гетерогенных аналогичен зависимостям, полученным для «естественных» гетерогенных сплавов $(Sm, Zr)(Co, Cu, Fe)_z$, для которых в высококоэрцитивном состоянии предполагается смешанный механизм магнитного гистерезиса [4]: задержка смещения доменных границ и необратимое вращение вектора спонтанной намагниченности. Таким образом, экспериментально показана возможность спеченных смесей на основе соединений $Sm(Co_{0.6}Cu_{0.4})_{6.0}$ и $Nd_2Fe_{14}B$ в высококоэрцитивном состоянии.

Авторы выражают благодарность К.П. Скокову за помощь в изготовлении образцов. Работа выполнена при поддержке Министерства образования и науки $P\Phi$ (грант № 3.7849.2017/8.9).

Библиографический список:

- 1. **Liu, J.F.** Microstructure and high temperature magnetic properties of $Sm(Co, Cu, Fe, Zr)_z$ (z = 6, 7 9, 1) permanent magnets / J.F. Liu, Y. Zhang, D. Dimitrov, G.C. Hadjipanayis // Journal of Applied Physics. 1999. V. 85. I. 5. P. 2800-2804.
- 2. **Matthias, T.** $Sm(Co, Cu, Fe, Zr)_z$ magnets for high-temperature applications: microstructural and micromagnetic analysis / T. Matthias, W. Scholz, J. Fidler et al. // IEEE Transactions on Magnetics. $-2002. V. 38. N_2 5. P. 2943-2945.$
- 3. **Semenova, E.M.** Micro- and nanostructures of *RCoCuFeZr* heterogeneous alloys with high temperature stability / E.M. Semenova, M.B. Lyakhova, A.I. Ivanova, M.N. Ulyanov // Materials Science Forum. 2016. V. 845. P. 46-49.
- 4. **Lyakhova, M.B.** High-temperature behavior of hard magnetic alloys $(R, Zr)(Co, Cu, Fe)_Z(R = Sm, Gd)$ / M.B. Lyakhova, E.M. Semenova, R.P. Ivanov // Metal Science and Heat Treatment. 2015. V. 56. I. 11-12. P. 602-608.
- 5. **Ляхова, М.Б.** Магнитный гистерезис сплавов $(R, Zr)(Co, Cu, Fe)_Z$ / М.Б. Ляхова, Н.П. Супонев, Е.М. Семенова // Материаловедение. -2002. -№ 8. C. 26-31.
- 6. **Yamashita, O.** Coercivity mechanism of $Sm(Co, Cu)_5$ / O. Yamashita // Journal of Physics and Chemistry of Solids. 2004. V. 65. I. 5. P. 907-912.
- 7. **Penton, A.** On the nature of the disordered microstructure in $Sm(Co, Cu)_5$ alloys with increasing Cu content / A. Penton, E. Estevez, R. Lora et al. // Journal of Alloys and Compounds. -2007. V.429. I.1-2. P.343-347.
- 8. **Herbst, J.F.** $R_2Fe_{14}B$ materials: Intrinsic properties and technological aspects / J.F. Herbst // Review of Modern Physics. 1991. V. 63. I. 4. P. 819-898.
- 9. **Stoner, E.C.** A mechanism of magnetic hysteresis in heterogeneous alloys / E.C. Stoner, E.P. Wohlfarth // Philosophical Transactions of the Royal Society A: Physical, Mathematical and Engineering Sciences. 1948. V. 240. I. 826. P. 599-642.